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Abstract—The rapidity with which digital information, partic-
ularly video, is being generated has necessitated the development
of tools for efficient search of these media. Content-based visual
queries have been primarily focused on still image retrieval. In
this paper, we propose a novel, interactive system on the Web,
based on the visual paradigm, with spatiotemporal attributes
playing a key role in video retrieval. We have developed in-
novative algorithms for automated video object segmentation
and tracking, and use real-time video editing techniques while
responding to user queries. The resulting system, called VideoQ
(demo available at http://www.ctr.columbia.edu/VideoQ/), is the
first on-line video search engine supporting automatic object-
based indexing and spatiotemporal queries. The system performs
well, with the user being able to retrieve complex video clips such
as those of skiers and baseball players with ease.

Index Terms—Content based, information retreival, object ori-
ented, spatiotemporal, video query.

I. INTRODUCTION

T HE ease of capture and encoding of digital images has
caused a massive amount of visual information to be

produced and disseminated rapidly. Hence, efficient tools and
systems for searching and retrieving visual information are
needed. While there are efficient search engines for text doc-
uments today, there are no satisfactory systems for retrieving
visual information.

Content-based visual queries (CBVQ) has emerged as a
challenging research area in the past few years [7], [13].
While there has been substantial progress with the presence
of systems such as QBIC [11], PhotoBook [27], Virage [14],
and VisualSEEk [33], most systems only support retrieval
of still images. CBVQ research on video databases has not
been fully explored yet. Our system, VideoQ, is an advanced
content-based video search system, with the following unique
features:

• automatic video object segmentation and tracking;
• a rich visual feature library including color, texture, shape,

and motion;
• query with multiple objects;
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• spatiotemporal constraints on the query;
• interactive querying and browsing over the World-Wide

Web;
• compressed-domain video manipulation.

Specifically, we present a novel video search system which
allows users to search video based on a rich set of visual
features and spatiotemporal relationships. Our objective is to
investigate the full potential of visual cues in object-oriented
content-based video search. We also support a keyword-based
search, where the keywords have been manually generated.
While the search on video databases ought to necessarily
incorporate the diversity of the media (video, audio, text
captions), our present work will integrate well into any such
effort.

We will present the visual search paradigm in Section II,
elaborate on the system overview in Section III, describe
video objects and our automatic video analysis techniques in
Sections IV and V, discuss the matching criteria and query
resolution in Sections VII and VIII, and finally present some
preliminary evaluation results in Section IX.

II. THE VISUAL PARADIGM

The fundamental paradigm under which VideoQ operates
is the visual one. This implies that the query is principally
formulated in terms of elements having visual attributes.
VideoQ also supports search using keywords; these keywords
have been generated manually, and can be used to “filter”
the returned results. The visual features that are stored in
the database are generated from an automatic analysis of the
video stream. Many retrieval systems, such as PhotoBook,
VisualSEEk, and Virage, share this paradigm, but only support
still image retrieval.

Video retrieval systems should evolve toward a systematic
integration of all available media such as audio, video, and
captions. While video engines such as [15], [14], [31], and
[24] attempt such an integration, much research on the repre-
sentation and analysis of each of these different media remains
to be done. Those that concentrate on the visual media alone
fall into two distinct categories:

• query by example (QBE);
• visual sketches.

In the context of image retrieval, examples of QBE systems
include QBIC, PhotoBook, VisualSEEk, Virage, and FourEyes
[23]. Examples of sketch-based image retrieval systems in-
clude QBIC, VisualSEEk, [17], [16], and [4]. These two
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Fig. 1. Visual interface of VideoQ. The figure shows an example query to retrieve video shots of all high-jump sequences in the database. Note that the
keywords “track and field” are used to filter the returned results. The results are shown in Fig. 2.

different ways of visually searching image databases may also
be accompanied by learning and user feedback [23].

Query by example systems work under the realization that
since the “correct” match must lie within the database, one
can begin the search with an element of the database itself
with the hope that one can guide the user toward the image
that he likes over a succession of query examples. In QBE, one
can use space-partitioning schemes to precompute hierarchical
groupings, which can speed up the database search [23].
While the search speeds up, the groupings are static and
need recomputation every time a new video is inserted into
the database. QBE, in principle, is easily extensible to video
databases as well, but there are some drawbacks. Video shots
generally contain a large number of objects, each of which
is described by a complex multidimensional feature vector.
The complexity arises partly due to the problem of describing
shape and motion characteristics.

Sketch-based query systems such as [16] compute the
correlation between the sketch and the edge map of each of
the images in the database, while in [4], the authors minimize
an energy functional to achieve a match. In [17], the authors
compute a distance between the wavelet signatures of the
sketch and each of the images in the database.

What makes VideoQ powerful is the novel idea of an
animated sketch to formulate the query. In an animated sketch,
motion and temporal duration are the key attributes assigned
to each object in the sketch, in addition to the usual attributes
such as shape, color, and texture. Using the visual pallette, we
sketch out a scene by drawing a collection of video objects. It
is the spatiotemporal relationships between these objects that
fully define a scene. An example query is illustrated in Fig. 1.

While we will extensively employ this paradigm, some
important observations are to be kept in mind. The visual
paradigm works best when there are only a few dominant
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Fig. 2. Results: the displayed retrieved shots which include four excellent matches (the first, third, fourth, and fifth) indicate the importance of the
motion attribute in video shot retrieval.

Fig. 3. VideoQ system where the queries are in the form of animated sketches. Both the animated sketch and the browsing modes support search in
conjunction with keywords.

objects in the video with simply segmented backgrounds.1 It
will not work well if the user is interested in video sequences
that are simple to describe, but are hard to sketch out, for
example, a video shot of a group of soldiers marching, shots
of a crowd on the beach, etc. It will also not work well when
the user is interested in a particular semantic class of shots: he
might be interested in retrieving that news segment containing
the anchor person, when the news anchor is talking about
Bosnia. For these examples, it is far more useful to search
in conjunction with keywords.

1Note that, even if the background shows a crowd, due to aggressive region
merging, they may be merged into one single region.

III. T HE VIDEOQ SYSTEM OVERVIEW

VideoQ is a Web-based video search system (Fig. 3), where
the user queries the system using animated sketches. The
system, which resides on the Web, incorporates a client–server
architecture. The client (a java applet) is loaded up into a Web
browser where the user formulates (sketches) a query scene
as a collection of objects with different attributes. Attributes
include motion, spatiotemporal ordering, shape, and the more
familiar attributes of color and texture.

The query server contains several feature databases, one for
each of the individual features that the system indexes on.
Since we index on motion, shape, as well as color and texture,
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Fig. 4. Feature classification tree.

we have databases for each of these features. The source video
shot database is stored as a compressed MPEG stream.

Once the user is done formulating the query, the client sends
it over the network to the query server. There, the features of
each object specified in the query are matched against the
features of the objects in the database. Then, lists of candidate
video shots are generated for each object specified in the query.
The candidate lists for each object are then merged to form
a single video shot list. Now, for each of these video shots
in the merged list, key frames are dynamically extracted from
the video shot database and returned to the client over the
network. The matched objects are highlighted in the returned
key frame.

The user can interactively view these matched video shots
over the network by simply clicking on the key frame. Then,
in the back end, the video shot corresponding to that key frame
is extracted in real time from the video database by “cutting”
out that video shot from the database. The video shots are
extracted from the video database using basic video editing
schemes [22] in the compressed domain. The user needs an
MPEG player in order to view the returned video stream.

Since the query as formulated by the user in the VideoQ
system comprises a collection of objects having spatiotemporal
attributes, we need to formalize the definition of a video object.

IV. WHAT IS A VIDEO OBJECT?

We define a region to be a contiguous set of pixels that
is homogeneous in the features that we are interested in (i.e.,
texture, color, motion, and shape). A video object is defined as
a collection of video regions which have been grouped together
under some criteria across several frames. Namely, a video

object is a collection of regions exhibiting consistency2 across
several frames in at least one feature. For example, a shot of
a person (the person is the “object” here) walking would be
segmented into a collection of adjoining regions differing in
criteria such as shape, color, and texture, but all the regions
may exhibit consistency in their motion attribute. As shown
in Fig. 4, the objects themselves may be grouped into higher
semantic classes.

The grouping problem of regions is an area of ongoing
research, and for the purposes of this paper, we restrict our
attention to regions only. Regions may be assigned several
attributes, such as color, texture, shape, and motion.

A. Color, Texture, Shape

In the query interface of VideoQ, the set of allowable colors
is obtained by uniformly quantizing the HSV color space. The
Brodatz texture set is used for assigning the textural attributes
to the various objects. The shape of the video object can be an
arbitrary polygon along with ovals of arbitrary shape and size.
The visual palette allows the user to sketch out an arbitrary
polygon with the help of the cursor, other well-known shapes
such as circles, ellipses, and rectangles are predefined, and are
easily inserted and manipulated.

B. Motion, Time

Motion is thekeyobject attribute in VideoQ. The interface
allows the user to specify an arbitrary polygonal trajectory for
the query object. The temporal attribute defines the overall

2If two regions exhibit consistency in all features, then they will be merged
into one region. Regions which exhibitno consistency at all in any feature
would probably not belong to the same object.
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duration of the object, which can either be intuitive (long,
medium, or short) or absolute (in seconds).

Since VideoQ allows users to frame multiple object queries,
the user has the flexibility of specifying the overall scene
temporal order by specifying the “arrival” order of the various
objects in the scene. The death order (or the order in which
they disappear from the video) depends on the duration of
each object.

Another attribute related to time is the scaling3 factor, or the
rate at which the size of the object changes over the duration
of the objects existence. Additional global scene attributes
include the specification of the (perceived) camera motion like
panning or zooming.

C. Weighting the Attributes

Prior to the actual query, the various features need to be
weighted in order to reflect their relative importance in the
query (refer to Fig. 1). The feature weighting is global to the
entire animated sketch; for example, the attribute color, will
have the same weight across all objects. The final ranking of
the video shots that are returned by the system is affected by
the weights that the user has assigned to various attributes.

V. AUTOMATIC VIDEO SHOT ANALYSIS

The entire video database is processed off line. The indi-
vidual videos are decomposed into separate shots, and then
within each shot, video objects are tracked across frames.

A. Scene Cut Detection

Prior to any video object analysis, the video must be split
up into “chunks” or video shots. Video shot separation is
achieved by scene change detection. Scene changes are either
abrupt scene changes or transitional (e.g., dissolve, fade in/out,
wipe). Meng [21] describes an efficient scene change detection
algorithm that operates on compressed MPEG streams.

It uses the motion vectors and discrete cosine transform
coefficients from the MPEG stream to compute statistical
measures. These measurements are then used to verify the
heuristic models of abrupt or transitional scene changes. For
example, when a scene change occurs before aframe in
the MPEG stream, most of the motion vectors in that frame
will point to future reference frame. The real-time algorithm
operates directly on the compressed MPEG stream, without
complete decoding.

B. Global Video Shot Attributes

The global motion (i.e., background motion) of the dominant
background scene is automatically estimated using the six-
parameter affine model [30]. A hierarchical pixel-domain
motion estimation method [3] is used to extract the optical
flow. The affine model of the global motion is used to
compensate the global motion component of all objects in the

3This is the factor by which an object changes its size over its duration
on the shot. This change can either be induced by camera motion or by the
objects intrinsic motion.

scene.4 The six-parameter model

(1)

(2)

where are the affine parameters, are the pixel co-
ordinates, and , are the pixel displacements at each
pixel.

Classification of global camera motion into modes such as
zooming or panning is based on the global affine estimation. In
order to detect panning, a global motion velocity histogram is
computed along eight directions. If there is dominant motion
along a particular direction, then the shot is labeled as a
panning shot along that direction.

In order to detect zooming, we need to first check if the
average magnitude of the global motion velocity field and two
affine model scaling parameters (and ) satisfy certain
threshold criteria. When there is sufficient motion, andand

are both positive, then the shot is labeled as a “zoom-in”
shot and if they are both negative, then the shot is labeled as
a “zoom out.”

C. A Brief Review of Video Object Segmentation

Common video object segmentation and tracking are tech-
niques based on selective features such as motion, color, and
edges as well as the consistency of their properties over space
and time. In [12], morphological segmentation algorithms are
used for intraframe and interframe segmentation of coherent
motion regions from successive motion vector fields. To obtain
accurate motion boundary, color-based spatial segmentations
are used to refine the motion segmentation results. In [36],
moving images are decomposed into sets of overlapping
layers using block-based affine motion analysis and-means
clustering algorithm. Each layer corresponds to the motion,
shape, and intensity of a moving region. Due to the complexity
of object motion in general videos (e.g., a moving object
may stop), these pure motion-based algorithms cannot be used
to automatically segment and track regions through image
sequences.

In the field of image segmentation, color (or gray level) and
edges are two major features being widely used. As both of
them have limitations, fusion of color and edge information is
proposed in [29] to obtain more “meaningful regions.” Here,
the color segmentation results are further split and merged in
order to ensure consistency with the edge map.

D. Tracking Objects: Motion, Color, and Edges

Our algorithm for segmentation and tracking of image
regions based on the fusion of color, edge, and motion
information in the video shot. The basic region segmentation
and tracking procedure is shown in Fig. 5. The projection and
segmentation module is the module where different features
are fused for region segmentation and tracking.

Color is chosen as the major segmentation feature because
of its consistency under varying conditions. As boundaries of

4Global motion compensation is not needed if users prefer to search videos
based on perceived motion.
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Fig. 5. Region segmentation and tracking of framen.

color regions may not be accurate due to noise, each frame of
the video shot is filtered before color region merging is done.
Edge information is also incorporated into the segmentation
process to improve the accuracy. Optical flow is utilized to
project and track color regions through a video sequence.

The optical flow of current frame is derived from frame
and in the motion estimation module using a hierarchical
block matching method [3]. Given color regions and optical
flow generated from above two processes, a linear regression
algorithm is used to estimate the affine motion for each
region. Now, color regions with affine motion parameters
are generated for frame, which will the be tracked in the
segmentation process of frame . The projection and
segmentation module is discussed in greater detail in [38].
Fig. 6 presents a brief overview.

Fig. 7 shows segmentation results with two sequences. In
both cases, the top row shows the original sequence and the
second row shows a subset of automatically segmented regions
being tracked. Tracked regions are shown with their represen-
tative (i.e., average) colors. Experiments show that our algo-
rithm is robust for the tracking of salient color regions under
different circumstances, such as multiple objects, fast or slow
motion, and instances of regions being covered and uncovered.

VI. BUILDING THE VISUAL FEATURE LIBRARY

Once each object in the video shot has been segmented and
tracked, we then compute the different features of the object
and store them in our feature library. For each object, we
store the following features.

Color: The representative color in the quantized CIE-LUV
space. It is important to bear in mind that the quantization is
not static, and the quantization palette changes with each video
shot. The quantization is calculated anew for each sequence
with the help of a self-organizing map.

Texture: Three Tamura [35] texture measures, coarseness,
contrast, and orientation, are computed as a measure of the
textural content of the object.

Fig. 6. Region projection and segmentation of framen.

Motion: The motion of the video object is stored as a list
of vectors (where the number of frames in the video
is ). Each vector is the average translation of the centroid
of the object between successive frames5 after global motion
compensation [30]. Along with this information, we also store
the frame rate of the video shot sequence, hence establishing
the “speed” of the object as well as its duration.

Shape: For each object, we first determine the principal
components of the shape by doing a simple eigenvalue analysis
[28]. At the same time, we generate first- and second-order
moments of the region. Two other new features, the normal-
ized area,6 and the percentage area7 are calculated. We then
determine if the region can be well approximated by an ellipse,
and label it so if that is indeed the case. We chose not to
store the best fit polygon to the object because of reasons of
computational complexity. The computational complexity of
matching two arbitrary vertex polygons is
[1].

The resulting library is a simple database having an
attribute, value pair for each object. Creating a relational

database will obviously allow for more complex queries to
be performed over the system as well as decrease the overall
search time. The issue of the structure of the database is
an important one, but was not a priority in the current
implementation of VideoQ.

5We could have also stored the successive affine transformations, but that
would have increased the complexity of the search. Also, it is worth keeping
in mind that the users will not have an “exact” idea of the trajectory of the
object that they wish to retrieve.

6The ratio of the area of the object to the area of the circumscribing circle.
Note that this feature is invariant to scale.

7This is the percentage of the area of the video shot that is occupied by the
object.
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Fig. 7. Region segmentation on QCIF sequences, using feature fusion. The top rows show the original sequence, while the corresponding bottom rows
show the segmented regions.

VII. FEATURE SPACE METRICS

The nature of the metric plays a key role in any image
or video retrieval system. Designing good metrics is a chal-
lenging problem as it often involves a tradeoff between the
computational complexity of the metric and the quality of the
match. It is not enough to be able to locate images or videos
that are close under a metric; they must be perceptually close
to the query.

While we employ well-accepted metrics for color, texture,
and shape, we have designed new metrics to exploit the
spatiotemporal information in the video.

A. Matching Motion Trails

A motion trail is defined to be the three-dimensional (3-D)
trajectory of a video object. It is represented by a sequence

, the three dimensions comprising
the two spatial dimensions and the temporal dimension

(normalized to the frame number; the frame rate provides
us with the true time information). Prior techniques to match
motion [9], have used simple chain codes or a spline
to represent the trajectory, without completely capturing the
spatiotemporal characteristic of the motion trail.

The user sketches out the trajectory as a sequence of vertices
in the – plane. In order for him to specify the motion trail
completely, he must specify the duration of the object in the
video shot. The duration is quantized (in terms of the frame
rate)8 into three levels: long, medium, and short. We compute
the entire trail by uniformly sampling the motion trajectory
based on the frame rate.

We develop two major modes of matching trails.

8We quantify it in terms of (frame rate)/(unit distance) where the distance
refers to the length of the motion trajectory in pixels. We assume a canonical
frame rate of 30 frames/s.

Spatial: In the spatial mode, we simply project the motion
trail onto the – plane. This projection results in an ordered
contour. The metric then measures distances between the query
contour and the corresponding contour for each object in
the database. This kind of matching provides a “time-scale
invariance.” This is useful when the user is unsure of the time
taken by an object to execute the trajectory.9

Spatiotemporal: In the spatiotemporal mode, we simply use
the entire motion trail to compute the distance. We use the
following distance metric:

(3)

where the subscripts and refer to the query and the target
trajectories, respectively, and the indexruns over the frame
numbers.10 Since, in general, the duration of the query object
will differ from that of the objects in the database, there are
some further refinements possible.

• When the durations differ, we could simply match
the two trajectories up to the shorter of the
two durations (i.e., the index runs up to

and ignore
the “tail”).

• We could also normalize the two durations to a canonical
duration, and then perform the match.

B. Matching Other Features

Let us briefly describe the distance metrics used in comput-
ing the distances in the other feature spaces.

9An immediate benefit of using this method is when one is matching
against a database of sports shots, then “slow-motion” replays as well as
“normal-speed” shots will be retrieved as they both execute the samexy

contour.
10Alternately, the index could run over the set of subsampled points.
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Fig. 8. Generating the candidate video shot list for a single-object query. The first column of features shows the features of the query, while the second
column shows the features across all objects in the database.

Color: The color of the query object is matched with the
mean color of a candidate tracked object in the database as
follows:

(4)

where is the weighted Euclidean color distance in the CIE-
LUV space, and the subscriptsand refer to the query and
the target, respectively.

Texture: In our system, we compute three Tamura [35] tex-
ture parameters (coarseness, contrast, and orientation) for each
tracked object. The distance metric is simply the Euclidean
distance weighted along each texture feature with the variances
along each channel:

(5)

where and refer to the coarseness, contrast, and
orientation, respectively, and the various refer to the
variances in the corresponding features.

Shape: In the current implementation, the metric only in-
volves the principal components of the shape:

(6)

where and are the eigenvalues along the principal axes
of the object (their ratio is the aspect ratio).

Size: This is simply implemented as a distance on the area
ratio11

(7)

where refer to the percentage areas of the query and
target, respectively.

The total distance is simply the weighted sum of these
distances, after the dynamic range of each metric has been
normalized to lie in [0, 1], i.e.,

(8)

where is the weight assigned to the particular feature and
is the distance in that feature space.

11This is the area of the object divided by the area of the entire shot.

VIII. Q UERY RESOLUTION

Using these feature space metrics and the composite dis-
tance function, we compute the composite distance of each
object in the database with each object in the query. Let us
now examine how we generate candidate video shots, given a
single and multiple objects as queries. An example of single-
object query along with the results (the candidate result) is
shown in Fig. 1.

A. Single-Object Query

The search along each feature of the video object produces
a candidate list of matched objects and the associated video
shots. Each candidate list can be merged by a rank threshold
or a feature distance threshold. Then, we merge the candidate
lists, keeping only those that appear on the candidate list for
each feature. Next, we compute the global weighted distance

, and then sort the merged list based on this distance.
A global threshold is computed (based on the individual
thresholds and additionally modified by the weights) which
is then used to prune the object list. This is schematically
shown is Fig. 8. Since there is a video shot associated with
each of the objects in the list, we return the key frames of the
corresponding video shots to the user.

B. Querying Multiple Objects

When the query contains multiple video objects, we need to
merge the results of the individual video object queries. The
final result is simply a logical intersection of all of the results
of the individual query objects. When we perform a multiple-
object query in the present implementation, we do not use the
relative ordering of the video objects in space as well in time.
These additional constraints could be imposed on the result
by using the idea of 2-D strings [8], [32], [33] (discussed in
Section X-C).

IX. HOW DOES VIDEOQ PERFORM?

Evaluating the performance of video retrieval systems is still
very much an open research issue [7]. There does not exist a
standard video test set to measure retrieval performance or
standard benchmarks to measure system performance. This is
partly due to the emerging status of this field. To evaluate
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Fig. 9. SetA is the set that is obtained from the search, while setB refers
to the ground truth. Precision and recall are defined using these two sets.

VideoQ, we use two different approaches. First, we extend
the standard precision-recall metrics in information retrieval.
Although we acknowledge several drawbacks of this classical
metric, we include it here simply as a reference. Another type
of metric measures the effort and cost required to locate a
particular video clip that a user has in mind or one that the
user may have previously browsed in the database.

A. Precision-Recall Type Metrics

In our experimental setup, we have a collection of 200 video
shots, categorized into sports, science, nature, and history. By
applying object segmentation and tracking algorithms to the
video shots, we generated a database of more than 2000 salient
video objects and their related visual features.

To evaluate our system, precision-recall metrics are com-
puted. Formally, precision and recall are defined as follows:

recall
retrieved and relevant

all relevant in the database
(9)

precision
retrieved and relevant

number retrieved
(10)

where the relevant video shots are predefined by the ground
truth database. Using Fig. 9

recall (11)

precision (12)

where the operator returns the size of the set.
Before each sample query, the user establishes a ground

truth by manually choosing a set of relevant or “desired”
video shots from the database. For each sample query shown
in Fig. 10, a ground truth is established by choosing all of the
relevant video shots in the database that have corresponding
features. The sample query returns a list of candidate video
shots, and precision-recall values are calculated according
to (9) and (10). The precision-recall curve is generated by
increasing the size of the return list and computing the
corresponding precision-recall values. Clearly, the precision-
recall curve is a parametric function of the set size.

While the VideoQ system comprises many parts such as
scene cut detection, object segmentation and tracking, feature
selection, and matching, precision-recall metrics measure how
well the system performs as a whole. Performance is based
solely on the proximity of the returned results with the ground
truth.

(a) (b)

(c) (d)

Fig. 10. Four sample queries used in the precision-recall experiments: (a)
and (b) highlight motion, color, and size, (c) highlights motion and size, and
(d) highlights multiple objects in addition to motion and size.

Four sample queries were performed as shown in Fig. 10.
The first sample query specifies a skin-colored medium-sized
object that follows a motion trajectory arcing to the left. The
ground truth consisted of nine video shots of various high
jumpers in action and brown horses in full gallop. The return
size is increased from 1–20 video shots, and a precision-recall
curve is plotted in Fig. 11(a).

An overlay of the four precision-recall curves is plotted in
Fig. 11. For normal systems, the precision-recall curve remains
relatively flat up to a certain recall value, after which the curve
slopes downward. This can be readily visualized using Fig. 9.
The precision-recall curves of Fig. 11 are averaged to yield
the expected system performance (Fig. 12). The “knee” of this
curve determines the optimal size of the returned set. A look at
Fig. 12 indicates that the optimal size for these queries should
lie between six–eight shots.

B. Time and Cost to Find a Particular Video Shot

Two benchmarks are used to evaluate how efficiently the
system uses its resources to find the correct video shot: query
frequency and bandwidth. While the former measures the
number of separate queries needed to get a particular video
shot in the return list, the latter measures the number of
different false alarms that are returned before obtaining the
correct video shot in the return list.

A randomly generated target video shot, shown in
Fig. 13(b), is chosen from the database. In order to find
this video shot, we query the system, selecting a combination
of objects, features, and feature weights. The total number of
queries to get this video shot is recorded. By varying the size
of the return list, we generate the query frequency curve.

Each query returns a list of video shots from an HP
9000 server over the network to a client. The video shot is
represented by a key frame, an 8872 pixel image. In many
cases, a series of queries was needed to reach a particular
video shot. The number of key frames that were returned are
totaled. Repeat frames are subtracted from this total since they
are stored in the cache and not retransmitted over the network.
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Fig. 11. Precision-recall curves corresponding to the sample queries of Fig. 10.

Fig. 12. Precision-recall curve averaged over the four precision-recall curves of Fig. 11.
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Fig. 13. Three sample queries used in system benchmarks. The left column shows the final sketch to successfully retrieve the video: (a) a skier, (b) two
soccer players, and (c) a baseball query. In the baseball video clip, the catcher moves to the left. Also note the strong match of the sky-like texture to
the sky. Video courtesy of Hot Shots Cool Cuts Inc. and Action Adventure Inc.

Conceptually, bandwidth is proportional to the total number of
key frames transmitted. Therefore, the bandwidth is recorded,
and by varying the size of the return list, the bandwidth curve
is generated.

Twenty target video shots, similar to those in Fig. 13, are
randomly selected. For each target video shot, sample queries
are performed, and query frequency and bandwidth curves are
generated by varying the return size from 3 to 18 video shots.
The query frequency curve in Fig. 14 shows that a greater
number of queries is needed for small return sizes. On average,
for a return size of 14, only two queries are needed to reach
the desired video shot.

Fig. 15 shows how the average bandwidth varies with
increasing set size. The figure also shows an optimal “dip”
in the curve, indicating the presence of an optimal return set
size. This is observed to be around nine shots. For small return

sizes, many times ten or more queries failed to place the video
shot within the return list. In Fig. 15, we compensate for these
failed queries by applying a heuristic to penalize the returned
videos.

It was observed that the system performed better when it
was provided with more information. Multiple-object queries
proved more effective than single-object queries. Also, objects
with a greater number of features, such as color, motion, size,
and shape, performed better than those with just a few features.
It is also important to emphasize that certain features proved
more effective than others. For example, motion was the most
effective, followed by color, size, shape, and texture.

X. RESEARCH ISSUES IN VIDEOQ

While the results section (Section IX) demonstrates that
VideoQ works well, there are other issues that need to be
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Fig. 14. Average number of queries needed to reach a video shot.

Fig. 15. Average bandwidth used.
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addressed. This section contains a brief overview of the issues
that we are currently working on.

A. Region Grouping

Automatic region grouping is an open problem in computer
vision, and in spite of decades of research, we are still far
from a completely automated technique that works well on
unconstrained data. Nevertheless, the segmented results need
to be further grouped in order for us to prune the search as well
search at a higher semantic level. Also, good region grouping
is needed to avoid oversegmentation of the video shot.

B. Shape

One of the biggest challenges with using shape as a fea-
ture is to be able to represent the object while retaining a
computationally efficient metric to compare two shapes. The
complexity of matching two arbitrary point polygons is

[1].
One approach is to use geometric invariants to represent

shape [26], [19], [20]. These are invariants on the coefficients
of the implicit polynomial used to represent the shape of the
object. However, these coefficients need to be very accurately
calculated as the representation (that of implicit polynomials)
is very sensitive to perturbations. Additionally, generating
these coefficients is a computationally intensive task.

C. Spatiotemporal Search

We are currently extending the work done on VisualSEEk
[33] on two-dimensional (2-D) strings [8] in order to effec-
tively constrain the query results. There has been work using
modified 2-D strings as a spatial index into videos [2], [32].

For video, 2-D strings can be extended to a sequence of 2-D
strings or a 2-D string followed by a sequence of change edits
[32]. Building on these observations, we propose two efficient
methods for indexing spatiotemporal structures of segmented
video objects.

• In the first method, only frames with significant changes
of spatial structures need to be explicitly indexed (by 2-D
strings of those image frames). Given such a representa-
tion, users will be able to search video objects or events of
interest (e.g., two objects swap locations, birth, or death
of objects) by specifying temporal instances or changes of
spatial structures. A simplified representation is to include
the 2-D strings at the beginning frame, the ending frame,
and several sampled frames in between.

• The second method extends the 2-D string-based query
to 3-D strings. Video objects may be projected to
and time dimensions to index their absolute centroid
position, three-dimensional support, and relative relation-
ships. More sophisticated variations of 3-D strings can be
used to handle complex relationships such as adjacency,
containment, and overlap.

XI. CONCLUSIONS

Video search in large archives is an emerging research area.
Although integration of the diverse multimedia components

is essential in achieving a fully functional system, we focus
on exploiting visual cues in this paper. Using the visual
paradigm, our experiments with VideoQ show considerable
success in retrieving diverse video clips such as soccer players,
high jumpers, and skiers. Indexing video objects with motion
attributes and developing good spatiotemporal metrics have
been the key issues in this paradigm.

The other interesting and unique contributions include de-
veloping a fully automated video analysis algorithm for object
segmentation and feature extraction, a java-based interactive
query interface for specifying multiobject queries, and the
content-based visual matching of spatiotemporal attributes.

Extensive content analysis is used to obtain accurate video
object information. Global motion of the background scene is
estimated to classify the video shots as well as to obtain the
local object motion. A comprehensive visual feature library is
built to incorporate most useful visual features such as color,
texture, shape, size, and motion. To support the on-line Web
implementation, our prior results in compressed-domain video
shot segmentation and editing are used. Matched video clips
are dynamically “cut” out from the MPEG stream containing
the clip without full decoding of the whole stream.

As described earlier, our current work includes region
grouping, object classification, more accurate shape represen-
tation, and support of relative spatiotemporal relationships.
An orthogonal direction addresses the integration of the video
object library with the natural language features to fill the gap
between low-level visual domain and the high-level semantic
classes.
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