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Abstract—This paper proposes a novel algorithm to discover
hidden individuals in a social network. The problem is increas-
ingly important for social scientists as the populations (e.g.,
individuals with mental illness) that they study converse online.
Since these populations do not use the category (e.g., mental
illness) to self-describe, directly querying with text is non-trivial.
To by-pass the limitations of network and query re-writing
frameworks, we focus on identifying hidden populations through
attributed search. We propose a hierarchical Multi-Arm Bandit
(DT-TMP) sampler that uses a decision tree coupled with rein-
forcement learning to query the combinatorial attributed search
space by exploring and expanding along high yielding decision-
tree branches. A comprehensive set of experiments over a suite
of twelve sampling tasks on three online web platforms, and
three offline entity datasets reveals that DT-TMP outperforms all
baseline samplers by upto a margin of 54% on Twitter and 48%
on RateMDs. An extensive ablation study confirms DT-TMP’s
superior performance under different sampling scenarios.

I. INTRODUCTION

As public interaction moves online, social scientists are
increasingly interested in understanding the online behavior
of the hidden populations such as people with mental ill-
nesses [5], sex workers [14] and paid posters [3].

Developing queries to identify individuals who belong to
hidden populations on social networks is important but dif-
ficult. For instance, mental-health experts may want to find
people with mental illness on social networks like Twitter
to conduct their studies. Unfortunately, we can’t query for
“mental illness” on Twitter to identify people suffering from
the illness because they may not use that specific phrase out of
privacy concerns in any of their tweets. Nevertheless, experts
who examine the tweets posted by such populations can more
readily find evidence related to illness. Since social networks
typically allow for text-based and faceted (i.e., attributed)
search, researchers spend considerable time determining which
queries best match their hidden population on social platforms.
More generally, the social scientists’ goal is to find people
that satisfy a certain property, but crucially, the property itself
cannot be directly queried.

The problem: to discover individuals from a social network
who satisfy a certain property (verifiable by an oracle), but
where we cannot directly specify the property as part of the
query. Thus by “hidden populations,” we refer to populations
with a non-queryable property.

There are several potential strategies to search for hidden
populations on a social network. One strategy is to exploit

the graph structure as in Respondent Driven Sampling [8]
or web-crawling [2], [18]. At a high-level, a key limitation
of graph-based navigation strategy is that the local graph
structure can limit our efforts to traverse the entire graph. In
contrast, we can use the social network API to query entities
using content (entity attributes) directly; the resulting entities
that satisfy the query may be present anywhere on the social
graph. One could also view the problem as reconstructing the
underlying entity database [19], [23] of the social network.
Unlike [19], [23], our problem is much more restricted—
we aim to obtain only a subset of the database. Query
reformulation [13], [21] is another promising approach. Query
reformulation systems typically use query log data to rewrite a
query to maximize the number of relevant documents returned,
where relevance is typically computed using the similarity of
the query to the document. However, hidden properties are
not directly accessible from the document text, making query
reformulation challenging.

In this paper, in contrast to the query reformulation frame-
work well studied in the IR community, we focus on identifying
hidden populations through attributed search. Many social
networks allow for searching via attributed query (e.g., time,
location, hashtag), in addition to text query.

There are two prominent challenges when using social net-
work APIs to discover hidden populations: 1) a limited number
of API calls and exponential search space 2) black-box API.
Firstly, most online social networks impose API rate limits,
restricting the number of queries per hour as well as limiting
the number of returned results. Further, researchers have a
finite budget, for example, the amount of time that they will
invest in querying the social network. Furthermore, for faceted
search, the number of possible attribute combinations is the
product of the attribute cardinalities and grows combinatorially
with the number of query attributes. Thus, it becomes difficult
to discover hidden entities from an exponential large query
space within a limited number of API calls. Secondly, the exact
mechanism by which the API returns results are inscrutable;
for example, if there are 5,000 ground truth set of tweets that
satisfy a specific query and Twitter presents 1,000 tweets due
to API restrictions, the mechanism by which Twitter selects
the result set is unknown. The bias in the results if any (e.g.,
towards more active users) is difficult to determine.

We derive two insights to address the issue of combinatorial
query space explosion and the opaque API. First, we notice



that the attributes that describe entities of interest (e.g. age,
gender), including people, often exhibit correlation with the
property of interest. Thus, there may exist combinations of
attribute values that provide the highest reward enabling us to
make the best use of API rate limits and search budget. Sec-
ond, the social networks typically employ a propriety ranking
function to distribute entities matching a query across different
result pages. Since, the ranking function is independent of the
hidden property, few result pages of a query are often sufficient
to evaluate the quality of a query.

Inspired by the above insights, we develop two solutions:
hierarchical decision tree and reinforcement learning based
architecture. First, we address the problem of combinatorial
search space by hierarchically organizing the query space
in the form of a tree. Then, we use a decision-tree based
search strategy that exploits the correlation between queryable
attributes and hidden property to systematically explore the
query space by expanding along high yielding decision-tree
branches. Second, we address the problem of opaque API by
using the returned set of results to estimate the quality of
queries. The quality of a query is evaluated using a reward
function which estimates the number of unique un-sampled
hidden entities that we can obtain by issuing the query.
Our unified reward function takes into account the stochastic
feedback (different result pages of a query very likely have
different number of hidden entities) and re-sampling effect
(a hidden entity may get sampled multiple times when the
entity satisfies mutiple issued queries) while allowing for an
exploration-exploitation among queries. We use reinforcement
learning based Thompson sampling to define the reward func-
tion.

Our contributions are as follows:

A novel algorithm: We address the problem of hidden pop-
ulation sampling problem in online social platforms
using attributed search for the first time. Existing ap-
proaches to hidden population sampling include graph
based search [2], [9], [17] and text-based query refor-
mulation techniques [13], [21]. In contrast, we propose
a hierarchical Multi-Arm Bandit (DT-TMP) sampler that
uses a decision tree coupled with a reinforcement learning
search strategy to query the combinatorial search space.

Robust empirical findings: We perform a comprehensive set
of experiments over a suite of twelve sampling tasks
on three online web-query platforms: Twitter, RateMDs
and GitHub, and three offline entity datasets: Patent,
Adult and Auto. DT-TMP outperforms all baseline sam-
plers (e.g., by a margin of 54% on Twitter and 48%
on RateMDs). When the number of matching entities
to a query is known in offline experiments, DT-TMP
outperforms baselines by a factor of 0.9-1.5× over the
baseline samplers. An extensive ablation study confirms
the DT-TMP’s superior performance under the different
sampling scenarios. Thus, our work is of significance to
applications such as social segmentation and profiling [6],
[15], online advertising and social mining [20], [10].

In the following section, we formally describe the hidden
population sampling. In Section III, we discuss our proposed
sampling algorith. Section IV details empirical results on real-
world datasets in online and offline settings. In Section VI, we
discuss prior work, and in Section V, we discuss our results
followed by conclusions in Section VII.

II. PROBLEM STATEMENT

Consider a scenario in which a healthcare expert or a
researcher is interested in reaching out to the depressed
population on Twitter. Assume that the expert has designed
a classifier for identifying whether a Twitter user is depressed
based on the user’s profile description and activity [5], [20].
The expert’s objective is then to retrieve a maximum number
of Twitter users that have the hidden property of depression.
However, it is non-trivial to sample the depressed population
from Twitter due to several bottlenecks. Firstly, the database
of Twitter accounts is accessible only through Twitter’s appli-
cation programming interface (API). Secondly, we can query
Twitter API by only some specific attributes such as time,
location and text. Thirdly, Twitter permits only 180 API calls
in a 15-minute window. Notice that the depressed population
is distributed across the entire Twitter population necessitating
the sampler to consider all types of queries. Finally, the dis-
tribution of the depressed population across different queries
is unknown making it difficult to frame queries that would
yield in a high discovery of the depressed population within
a limited budget of API calls.

To explain the sampling framework, we describe two major
features of social network APIs such as Twitter API: query
interface and returned-result set. Query interface such as
Twitter advanced search API lets the expert query Twitter
by setting attribute-values to the queryable attributes. For
example, the expert may set the location attribute to ‘New
York’ and text-attribute to ‘mental health’ and time attribute
to ‘*’ (or ignoring it). In other words, the query can be
interpreted as a conjunction over queryable attributes say Ai

(i = 1, 2, . . . r) where attribute-values zi of the attributes are
obtained from their respective attribute domains zi ∈ di where
di = dom(Ai) ∪ {∗}. Formally, we shall represent a query
involving r queryable attributes by

∧r
i=1 zi. In this work, we

consider only conjunctive combination of attributes as a query.
On issuance of a query, Twitter API by default returns a

result page comprising m (typically 20) entities and a pointer
to the next page of results. The sampler may obtain the
subsequent m results for the same query by issuing another
API call or get another m results by issuing a different
query. Thus, the sampler incurs a unit cost of communication
for each query issued. Subsequently, the profiles of entities
returned by the API are analyzed to identify whether they
satisfy the hidden property of depression or not. Since the
cost incurred in determining the entity’s hidden property is
directly proportional to the API call cost, we use API cost as
the sole cost constraint of the problem.

Problem definition: Suppose entities on an online social
platform are queryable using a conjunctive combination of r



queryable attributes Ai for i = 1, 2, . . . r. Further, consider
that there exists a target subpopulation satisfying a hidden
property that is verifiable by an oracle. Given a budget B of
API calls, the sampler’s objective is to maximize the count of
sampled entities satisfying the hidden (target) property.

III. DECISION TREE-MULTI ARMED BANDIT

A. Decision problem

We show that the process of sampling hidden web popula-
tions as described in Section II is primarily a decision problem.
The sampler continuously decides which query to issue to
the API such that the sampler obtains a maximum possible
number of entities from the hidden population within the
given API budget. Based on the sampled entities, the sampler
maintains a probabilistic model of the entity database that gets
updated over time. The model is used to construct a query. The
returned-results obtained from issuing the constructed query is
subsequently used to update the model. This cycle of query
construction, returned-result analysis, and model updation
continues until the API budget runs out. We deliberate upon
each component of the cyclic process separately.

We maintain the model of the entity database using a
set of probabilistic parameters. In the absence of any prior
semantics or syntactic information about the attributes, the
model treats each queryable attribute such as location, time and
keywords in Twitter as independent variables. Furthermore,
we model the attribute-values of every attribute independently,
i.e. ‘New York’, ‘Los Angeles‘ and ‘Chicago’ corresponding
to location attribute are modeled independently as well. The
above assumptions allow our model to be applicable across a
suite of online social platforms.

The sampler interacts with the social platform via a query
interface. We represent query as a conjunctive combination
of discrete attributes. In compliance with our problem formu-
lation, we approximate continuous attributes by discretizing
them into different bins and handle text search by an expert-
based selection of a few relevant textual phrases.

On issuance of an attributed query, the online social plat-
form returns a list of entities: ‘returned result set’. As illus-
trated by the Twitter example, the same attributed query can be
used to gather more results by traversing over the next pages.
The returned results provide a feedback that the sampler uses
to update its model. The number of entities belonging to the
hidden population indicates the quality of the query. Thus,
the core objective of the hidden population sampler is to find
high-quality queries and to issue those queries repeatedly.

B. Proposed DT-TMP algorithm

First, as noted in the Introduction, the size of query space is
exponential

∏
i |di|. We deal with the problem of exponential

query space by hierarchically ordering the queries from the
most general to the least general (the most specific) query.
Figure 1 shows the hierarchical organization of queries. For
instance, a query where location attribute is set to ‘Chicago’
and text attribute is ignored (set to ‘*’) is a generalization of
the query where location is set to ‘Chicago’ and text attribute

is set to ‘#Cubs’ since the former includes all entities matching
the later. In principle, a query q1 is a generalization of query q2
if the set of population entities matching query q1 is a superset
of the set of entities matching q2.

Second, the analysis of the returned result set by the API is
a non-trivial task because of the partial information available
during sampling and the re-sampling issue. In each API call,
the sampler obtains partial information in the form of the
returned set of m or fewer results. For illustration, consider
that a query where location attribute is set to ‘Chicago’ yields
5 entities from the depressed population out of 20 returned
entities on the first result page. We shall assume the query
precision or the fraction of hidden entities matching this query
is 5/20 = 0.4. More generally, we model probabilistically
the query precision using a Beta distribution that is typically
used to model probability distribution of probabilities [22].
Furthermore, a query where location is set to ‘Chicago’ is
very likely to lead to the entities that also satisfy queries where
the text attribute is ‘#Cubs’. The sampler, therefore, needs to
update the quality metric of queries where text attribute is set
to ‘#Cubs’ so that it avoids making queries that lead to re-
sampling of same hidden entities. We avoid re-sampling by
estimating the expected number of distinct unseen entities to
be discovered by issuing a query q. Since we are oblivious of
the ordering of results, we consider that the results are returned
either via random sampling with or without replacement from
the set of entities matching the given query. We now derive
reward function for sampling with replacement.

Suppose the number of entities in the database satisfying a
query q is Nq . Further, assume that the sampler has already
observed nq distinct entities satisfying the query q out of
which there are Sq number of target entities and Fq number
of non-target entities. From Standard Probability Theory, we
therefore obtain the following expected reward rq when query
q is executed [12].

E[rq] =
Sq

Sq + Fq︸ ︷︷ ︸
expected # targets

· Nq − nq

Nq︸ ︷︷ ︸
new

·
(
1−

(
1− 1

Nq

)m
︸ ︷︷ ︸

unique

)
(1)

where m is the maximum number of results returned by the
web API in response to a single query. The expected reward
is the estimated number of new distinct hidden entities that
are likely to be obtained by re-issuing the query q.

For sampling with replacement, we update the reward
function by updating the third term since unique entities within
the result page of a query is guaranteed (i.e. Sq

Sq+Fq

Nq−nq

Nq
m).

When Nq is unknown, we assume that Nq >> nq , thus the
reward function approximates to just the first term ( Sq

Sq+Fq
m).

The query precision for any query is an unknown measure
to an unsupervised hidden population sampler. If the preci-
sion values are known, the sampler would straightforwardly
formulate its queries using only the high precision queries.
In order to obtain an unbiased estimate of the precision,
the sampler needs to explore over the combinatorially large
query space. While a naive exploration of queries is beneficial
for formulating better future queries learned from unbiased
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Fig. 1: Model description of DT-TMP. For hidden population of ‘mental illness’ (represented in red color), the DT-TMP searches the
population for the best combinatorial query comprising of two queryable attributes: income and age. It first uses <*, *> query to find the
best single attributed query from queries such as <Low, *> and <*, Young>. Subsequently, it finds the best query <Low, *> along
which it expands its query search. The decision tree on the right shows the query expansion with the query expansion along green links.

estimates, it leads to poor immediate results. We, therefore,
employ Thompson sampling for handling this exploration-
exploitation tradeoff of queries. Thompson sampling is a well-
known optimal MAB algorithm that achieves the lower regret
bound of a standard MAB problem [1]. Notice that Thompson
sampling is consistent with the independence assumption of
attributes and attribute-values made in Section III-A.

Now, we generalize the intuitions presented above to
propose a simple yet effective hidden population sampler:
Decision-Tree Thompson sampler (DT-TMP).

Description of algorithm: DT-TMP is a combination of a
standard Decision Tree and Thompson sampling [1]. DT-TMP
maintains a query pool Q comprising of queries explored
by the algorithm. The query pool is initialized with the
most general query. Typically, the most general query can
be represented using the queryable attributes as

∧r
i=1 ∗. The

most general query is initially used to sample from the entire
population. Gradually, DT-TMP expands the query pool by
adding promising specific queries.

For every query q ∈ Q, DT-TMP tries to predict the future
reward using the reawrd function that would be obtained when
query q is issued. Based on the prediction, DT-TMP chooses
the best query to issue. A query issued to the API yields
a result page comprising m entities. Each returned entity
is evaluated as a success or failure depending on whether
it belongs to the hidden population or not. We model each
success and failure of every returned entity as a random sample
drawn from a unknown Beta distribution of the query that
the model learns over iterations. We use a non-informative
uniform prior Beta(1, 1) as the starting state for every query.
This choice of Beta distribution permits us to efficiently update
the posterior distribution upon receiving the returned results.

We now show how to update the posterior distribution of
any query q′ ∈ Q when another query q is issued. If q is
a generalization of q′, we increment the success or failure
parameter of Beta distribution by one depending on whether
the returned entity is in target populace or not, and the returned
entity matches query q. In the other case, when the specific
query q accounts for only a fractional part of the general
query q′, we update the Beta distribution of the general query

proportionately. That is, if q is a specific version of q′, we
increment the success or failure parameter of q by the ratio of
population size matching query q to population size matching
query q′. We are able to estimate this fraction directly from the
returned result since the query pool is expanded hierarchically
from the most general to the most specific queries.

At each step of the iteration, DT-TMP employs Thompson
sampling to select the best query among the query pool. Note,
that the query pool is fixed over epoch time h to ensure
that enough entities are sampled before expanding the query
pool. The query pool is expanded by adding new specific
queries corresponding to the best query in Q. We prove using
Lemma 1 that expansion of a general query always leads to
an equally good or a higher precision specific query. Thus,
DT-TMP continues to find the highest quality query until the
budget is finished.

Lemma 1. There always exists a specific query that has higher
or equal query precision than its general query. Furthermore,
there exists a leaf node of the decision tree with the highest
query precision.

In-spite of its complexity, DT-TMP is surprisingly easy
to implement and has a linear space and a quadratic time
complexity. For practical reasons, we assume number of
attributes r and result size m to be constant. In each iteration in
the outer-loop, the maximum number of queries added to the
query pool is limited by n where n =

∑r
i=1 |di|; the budget

B limits the number of iterations. Furthermore, the decision
tree takes O(Q) space which is bounded by O(nB). Every
query in Q uses a constant space parameter set to estimate
the reward distribution. Thus, the overall space complexity
of the DT-TMP is O(nB). A similar analysis implies the
time complexity of DT-TMP is O(n2B) since each iteration
(sampling and updating Beta distributions) takes O(n) time.
Lastly, we note in Lemma 2 that at limiting budgets DT-TMP
behaves as TMP when the query pool expands to the entire
query space.

Lemma 2. At asymptotic limits of the budget, DT-TMP tends
to a naive Thompson sampler.



C. Guarantees of the proposed algorithm

Different number of attributes, attribute cardinalities, at-
tribute distributions and the use of decision-based search tree
structure makes the analysis of DT-TMP difficult. Furthermore,
it is non-trivial to extend the standard regret analysis used
for analyzing MABs to the DT-TMP algorithm. First, unlike
MAB which has just one optimal arm (or query), a stan-
dard DT-TMP’s optimality involves a set of queries. Second,
the underlying quality of a query is fixed in MABs while
DT-TMP has unconventional reward feedback as described
in Section III-B. Third, on the issuance of a query, the MABs
get one result while DT-TMP gets the result set R that can be
of size anywhere between 0 and m.

In the following lemma, we show that when specific query’s
quality is correlated with the general query’s quality, DT-TMP
based search tree is more efficient than TMP. [12] details the
proofs.

Lemma 3. For a sufficiently large dataset when the query
precision of specific queries within one general query are
more similar to each another than the specific queries of
another general query (clustering effect), DT-TMP requires
fewer number of queries to find the optimal query than TMP.

IV. EXPERIMENTS

A. Datasets

We deploy our sampling strategy on three real-world online
web-query platforms: Twitter, RateMDs and GitHub; and three
offline datasets: Patent, Auto and Adult.

Twitter: For Twitter, we use top ten hashtags of top 10
National Football League (NFL) teams in USA1 as the first
attribute and the corresponding home locations of the team as
the second attribute for querying. Twitter REST API is used
to gather tweets corresponding to all possible combinatorial
attributes (query). Since Twitter API allows only seven days
of data to be accessed, we collected all possible queryable
tweets and their creator (Twitter user) between a fixed time
frame of 6 days (26 April 2018 till May 1, 2018).

RateMDs: For RateMDs, we employ four queryable
attributes—gender, specialties, verified and patient
acceptance—to search for doctors. Each query returns
one result page of 10 doctors, and the user can also specify
which page to retrieve. We collected the result pages
corresponding to every possible query in August 2018. Each
doctor page is a profile consisting of doctor’s user-provided
rating, their credentials, and list of insurances they accept.

GitHub: For GitHub, we use three user attributes to
search—top ten popular programming languages2, the num-
ber of followers, and the number of repositories of a user.
We discretize the last two continuous attributes. Similar to
Twitter, GitHub returns by default a set of 20 users for each
query. Furthermore, for a given query, GitHub API returns a
maximum possible results of 1000. We use the default ranking
of API to get the results of a query.

1https://www.usatoday.com/sports/nfl/rankings/
2http://githut.info/

In addition to the online experiments, we simulate a typical
online social platform through a local server as shown in [23]
using data from three real-world entity dataset: Patent [7],
Auto 3, and Adult [11]. The local server helps us perform a
detailed examination of factors affecting the hidden population
sampling by modifying the sampling setup like the cardinal-
ities of the queryable attributes, which is not possible in an
online setting. In the absence of a well-defined query interface
system, we simulate the query interface in the following way.
The query interface to the datasets allows only conjunctive
queries formed using the queryable attributes. For each query,
the user incurs a unit cost in API call. The query interface
returns a set of k random results (default value of page
size is set to 10 unless otherwise stated) drawn from the
query matching entities with replacement. We observe similar
empirical result across samplers when the query interface
returned k random results drawn from the matching entities
without replacement. Full description about the datasets and
tasks can be found at [12].

B. Task description

We consider twelve hidden population sampling tasks (pre-
fixed by T) for each of the online and offline datasets. For
Twitter, we employ properties of Twitter users that are not
queryable via Twitter API to define three hidden populations:
female Twitter users (T1), Twitter users who have verified
accounts (T2), and early adopters of Twitter determined by
if the users created their account before 2008 (T3). We use
an off-the-shelf gender predictor [16] as our ground truth
classifier for predicting user’s gender from profile name; the
other two properties are directly available from user profile
information. For RateMDs, we consider three hidden popula-
tions of doctors: doctors with a 5-star rating (T4), doctors who
received more than 10 ratings (T5), and doctors who accept at
least three insurance (T6). For GitHub, we consider GitHub
users whose nationality is China as (T7) the first hidden
target population. For identifying Chinese users, we employ
the location information in the users’ profile to predict their
nationality. For the next two GitHub tasks, we set hidden target
population to experienced GitHub users (users who contributed
to projects on more than 50% of days in the year 2017) (T8)
and users who work or study at an educational institution
(inferred by their email address) (T9).

Similarly, for offline experiments, we chose the hidden
property of the hidden population as the attributes that are
not expressible as a combination of one or more queryable
attributes. For example, the queryable attributes such as cat-
egory, subcategory and class of a patent cannot be used to
search for authors with a specific nationality (hidden property).
More importantly, real-world scenarios motivated the choice
of hidden property for offline datasets. We note that academic
search engines such as PubMed, Google Scholar and Microsoft
Search are not searchable using properties such as the au-
thor’s nationality and their writing style. Similarly, mileage

3https://www.kaggle.com/orgesleka/used-cars-database

https://www.usatoday.com/sports/nfl/rankings/
http://githut.info/
https://www.kaggle.com/orgesleka/used-cars-database


Sampler Twitter RateMDs GitHub Patent Auto Adult
T1 T2 T3 T4 T5 T6 T7 T8 T9 T10 T11 T12

EXP 0.046∗ 0.049∗ 0.009∗ 0.102∗ 0.268∗ 0.067∗ 0.050∗ 0.086∗ 0.004 0.098∗ 0.035∗ 0.051∗

RW 0.032∗ 0.041∗ 0.007∗ 0.105∗ 0.276∗ 0.069∗ 0.053∗ 0.094∗ 0.004 0.068∗ 0.022∗ 0.028∗

LS 0.087∗ 0.066∗ 0.015∗ 0.084∗ 0.198∗ 0.046∗ 0.059 0.097∗ 0.003∗ 0.074∗ 0.020∗ 0.046∗

CB 0.102∗ 0.079∗ 0.012∗ 0.081∗ 0.243∗ 0.054∗ 0.056∗ 0.106∗ 0.003∗ 0.270∗ 0.058∗ 0.230∗

TMP 0.125∗ 0.077∗ 0.015∗ 0.087∗ 0.265∗ 0.055∗ 0.050∗ 0.087∗ 0.004 0.063∗ 0.057∗ 0.055∗

DT-TMP 0.178 0.111 0.027 0.163 0.453 0.087 0.062 0.114 0.004 0.660 0.145 0.447

TABLE I: Sampling performance (AUC of throughput vs query budget till 1000) of baseline and proposed DT-TMP sampler across a suite
of 12 sampling tasks over six different datasets. DT-TMP is shown to be the best sampling strategy. Decision tree based search allows
DT-TMP to hierarchically explore queries of the combinatorial query space while simultaneously exploring-exploiting high yielding queries.
∗ indicates that DT-TMP outperforms the sampler at 95% statistical confidence.
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Fig. 2: Sampling throughput at different API budgets on repre-
sentative tasks T1, T4 and T7 in Twitter, RateMDs and GitHub.
Combinatorial sampler (DT-TMP) performs the best.

information is a non-queryable property of the automobiles in
the popular advertisement website Craigslist. Lastly, income
is often a hidden non-queryable property of users in existing
search interfaces of popular sites such as LinkedIn and Ange-
list but are easily inferable given job description. Therefore,
we consider hidden population tasks for each of the offline
datasets: patents authored by Japanese researchers (T10),
automobiles that have less than 40K kilometers mileage (T11)
and adults who earn more than $50K per annum (T12).

C. Evaluation

Throughput or query harvest is a common measure of
how well a sampler performs [2]. In the context of hidden
population sampling, we define the throughput at a given API
budget as the ratio of the number of unique target population
entities sampled to the maximum attainable number of target
entities. Thus, the throughput of a sampler after making budget
B API calls is,

Throughput =
#(hidden target entities retrieved)

B ×m
(2)

We report all evaluation metrics over 100 independent runs.

D. Baselines

We now enumerate different baseline sampling strategies.
• Uniform query sampling from the query space or pure

exploration sampling (EXP). At each time step, EXP queries
the web API by randomly sampling with replacement a
single query from all possible queries.

• Thompson sampling (TMP) is a standard Thompson sam-
pler [1] where the reward from each query is computed using

the returned set feedback. In other words, it is a DT-TMP
sampler without a decision tree.

• Lazy slice cover search (LS) [23].
• Content-based search (CB) [17].
• Random Walk (RW) [4].
Finally, we set the epoch h of the DT-TMP sampler by default
to 10 for all datasets. This setting ensures that the sampler uses
feedback gained from 10m (typically 100) new observations
to expand the query pool appropriately.

E. Results

We evaluate the performance of the samplers using average
throughput value under a variable query budget (ranging from
100 to 1K API calls). Table I shows the result. We make
several observations. First, when comparing DT-TMP with
hidden population agnostic samplers (EXP, RW, LS), we
notice that DT-TMP performs better since it makes use of
the intermediate results to estimate the queries’ quality and
subsequently issues high-quality queries. Second, we observe
the effect of combinatorial query space on TMP as it gets
stuck in the exploration phase. In contrast DT-TMP exploits
the hierarchical structure of the combinatorial action space
to greedily explore the attribute combinations (query), thus
outperforming TMP by a factor of 1.9× across all tasks. Third,
CB being a greedy sampling policy gets stuck in locally
high quality queries. Under Thompson sampling, DT-TMP
maintains an optimal exploration-exploitation trade-off when
searching for globally optimal queries and avoids getting stuck
in locally high quality queries. Fourth, we observe DT-TMP
yields the best performance across all datasets and tasks in
11 out of 12 cases. Due to the lack of sufficient feedback
(very low number of hidden entities) in GitHub task T9,
all samplers fare poorly. Finally, DT-TMP outperforms the
second best sampler by a margin of 54% in Twitter, 49% in
RateMDs, 2% in GitHub. Due to the availability of the number
of entities Nq matching a query q in offline experiments as in
Google, LinkedIn and Amazon APIs, DT-TMP outperforms
the competition by a significant margin of 144% in Patent,
148% in Auto and 92% in Adult datasets. DT-TMP estimates
Nq for the online experiments.

Lastly, due to the brevity of space, we show in Figure 2 the
throughput performance of samplers across different sampling
budgets for three representative tasks on Twitter, RateMDs and
GitHub. The throughput rate falls as the number of unsampled
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Fig. 3: Comparing throughput value of non-combinatorial query
based samplers (TMP, EXP) and combinatorial query based sampler
(DT-TMP) at different sampling budgets. Combinatorial sampler out-
performs all non-combinatorial sampler by 48.88% (AUC measure).

hidden entities in the datasets falls. Twitter reports 900M
active users; therefore we expect throughput in Twitter to drop
at much higher budgets. Finally, we note that DT-TMP is
effective not only at finite sample budgets as shown above
but also at asymptotic limits of the budget. DT-TMP takes
substantially fewer number of queries to achieve the full
coverage of the hidden population entities. We refer interested
readers to the technical report for detailed results [12].

V. DISCUSSION

A. Why does combinatorial querying work?

We observe that querying online APIs via a combination
of one or more attributes leads to higher coverage of hidden
population than querying via an individual attribute at a time.
In a non-combinatorial querying system, only one attribute can
be used to define a query. Therefore, each queryable attribute
Ai contributes di (Ai’s cardinality) number of different queries
to the non-combinatorial querying space. Whereas, a combi-
natorial query space is defined by conjunction of one or more
queryable attributes. Thus, the size of combinatorial query
space is exponential (

∏
i di). One of the advantages of non-

combinatorial querying system over combinatorial querying
system is its limited size of query space. This facilitates
existing reinforcement learners to efficiently explore-exploit
high yielding queries in a non-combinatorial query system.
However, we show via DT-TMP sampler that hierarchical
structure within combinatorial query space and correlation
between attributes can be exploited to design even more
efficient sampling strategies. Figure 3 shows DT-TMP sampler
that uses combinatorial querying system outperforms all non-
combinatorial based samplers. At a query budget of 1000,
DT-TMP outperforms the best non-combinatorial query sam-
pler, TMP, by margin of 112.75% on Patent, 23.25% on Auto,
and 10.64% on Adult dataset. Furthermore, we proof the supe-
riority of combinatorial query system over non-combinatorial
query system under a specific sampling scenario [12].

Lemma 4. For a sufficiently large dataset and a query
system defined over a uniformly distributed attribute, DT-TMP
requires a fewer number of queries to find the best query when
the universal query (’*’) is available than TMP.

Through an illustrative example in Figure 4, we show that
when arms (attribute-value) of two attributes are combined
to generate a new query, it performs better than the two
corresponding arms that are queried disjointly. The leftmost
and the topmost sliders show the quality of arms of individual
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Fig. 4: Comparison between combinatorial queries and disjoint
combination of queries shown via heat-map of two attributes, “marital
status” and “education”, in Adult dataset. Darker shade represents
higher quality arms.
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Fig. 5: Throughput value for different sampling strategies on Auto
dataset at a budget of 100 API calls across (a) varying number of
queryable attributes (b) varying attribute cardinalities, and (c) varying
shuffle ratio or correlation values. The superior results of DT-TMP
under different sampling scenarios demonstrates its robustness.

attributes. The left matrix is the combinatorial queries of the
two attributes: “education” and “marital status”. The right
matrix is the combination of two arms which are queried
disjointly, and their quality is measured via average qual-
ity of the two corresponding arms. Observe that the real-
world arm combinations help us explore very high-quality
combinatorial arms (darker high-quality regions defined by
setting “education” to 9 or 10 and marital status set to 5).
Notice that such types of correlation between attributes ease
recover high yielding arms by the decision tree. However,
when the queryable attributes are independent, decision tree
MAB sampler works identical to a naive MAB sampler.

B. Digging deeper: Factors affecting sampling

We explore prominent factors that impact hidden population
sampling. This analysis will help users to be mindful of
different factors that affect the hidden population sampling.

Due to space limitations, we summarize the extensive abla-
tion studies [12] into the following points. First, Figure 5(a)
shows that as the number of queryable attributes increases,
DT-TMP’s performance increases due to its flexibility in
exploring over large query space. Large number of attributes
creates exponentially more queries to explore for naive MAB
samplers, thereby causing a drop in their performance. Sec-
ond, Figure 5(b) illustrates that DT-TMP performance ex-



ceedingly well over large attribute spaces created by high
attribute cardinalities. Third, Figure 5(b) demonstrates that
sampling performance falls across all samplers as the shuffle
rate increases. This is because all queries tends towards the
same query precision as the dataset gets shuffled. Finally, we
observe a diminishing improvement in sampling performance
as the page-size increases. Nevertheless, we observe DT-TMP
consistently outperforms the state-of-the-art samplers over all
offline tasks and datasets even under varying conditions of
sampling. This reflects the robustness of DT-TMP algorithm.

VI. EXISTING WORK
Focused crawling is a well-studied problem wherein a

crawler tries to maximize the coverage of a given target
topic such as “semiconductor related web-pages” by traversing
web-links. Chakraborti et al. [2] proposed a focused crawler
that iteratively explores web-links that are more likely to
fetch topic web-pages. Similar works on crawling are focused
around exploiting the information of a web-page such as its
content link structure, URL and metadata [18] to efficiently
crawl target pages. In contrast to the focused crawling that
uses graph based interface, our samplers use a form based
interface to iteratively query for a hidden population.

Hidden web crawling is an area of research that tries to
gather the entire population or database contents by efficiently
querying or crawling via database’s interface. Raghavan et
al.[19] first proposed a task specific hidden web crawler
called Hidden Web Exposer to crawled the hidden web forms.
Sheng et al.[23] showed optimal algorithms for crawling the
entire hidden web database from form based interfaces. In
contrast to the previous studies in hidden web crawling that
aims to discover the entire database, our sampler is focused
towards a target population. Furthermore, the previous works
have either been limited to textual query interfaces or require
a prior knowledge or seed set of the well defined topic.
Another limitation of existing form based interfaces is that they
consider all results pertaining to a query to be obtained in a
single API query [17], [23] which is not a realistic assumption
for most web interfaces such as GitHub and Twitter.

Query reformulation is another line of research that tries
to find high quality queries for higher recall in text retrieval
systems. However, existing retrieval systems in literature are
predominantly designed to search for new queries that yield
higher reward [13], [21]. Query reformulation systems typ-
ically rewrite a query to find a new query that maximizes
the number of relevant documents returned. In contrast to
the query retrieval systems that retrieve textual documents,
the focus of our work is entity retrieval where sampled
entities provide very limited attribute information and the
query interface is limited to just the entity attributes. To the
best of our knowledge, this is the first work that aims to
retrieve hidden entities in OSNs by querying their faceted APIs
using attribute combinations.

VII. CONCLUSION AND FUTURE WORK
This paper proposed a novel algorithm for sampling hidden

target populations from online social networks. However,

sampling individuals from hidden populations is hard due
to API rate limits and combinatorial search space to search
from. To address these challenges, we modeled the problem
as a Multi-Armed Bandit problem. We proposed a state-aware
DT-TMP that exploited structure in combinatorial query space
to discover high yielding queries. Our proposed sampler is
better than the competing samplers by factor of 0.9-1.5× on
offline real-world datasets where query size is returned by
the API. Our samplers perform by margin of 54% on Twitter
hidden population tasks and 49% on RateMDs experiments.
Exploring the effect of classifiers in discovering hidden pop-
ulations is the focus of our future work.
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