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millions of users to create and share content within online social networks. Second, social data

are often multi-faceted (i.e., have many dimensions of potential interest, from the textual content
to user metadata). Finally, the data is dynamic – structural changes can occur at multiple time

scales and be localized to a subset of users. Consequently, a framework for extracting useful in-
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diversity of the facets of the data. In SCENT, we focus on the computational cost of structural

change detection in tensor streams. We extend compressed sensing (CS) to tensor data. We show

that, through the use of randomized tensor ensembles, SCENT is able to encode the observed
tensor streams in the form of compact descriptors. We show that the descriptors allow very fast

detection of significant spectral changes in the tensor stream, which also reduce data collection,
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1. INTRODUCTION

Large volumes of social media data are being generated through highly popular
social media platforms, such as Facebook, Twitter, Digg, and Flickr. For example,
as of 2010, Facebook has 500 million users1, and Twitter currently has a rate of
36,000 tweets per minute2. The nature of the data available in these platforms
present many opportunities: data about individuals and the social structures to
which they belong, are invaluable resources for understanding many multifaceted
and complex social phenomena, from entertainment to politics to religion, that
permeate every aspect of our daily lives. As many commercial/social/political
institutions and movements rush to leverage the Web to improve their reach, online
communication takes an increasingly significant role alongside (and in some cases
surpassing) more traditional venues. In fact, today social media provide a key
context for the rapid emergence and dissemination of cultural memes. Therefore, a
critical understanding of the development and evolution of online social structures
is increasingly important for educators, policy makers, as well as advertisement
agencies and, thus, there is an increasing demand for analysis frameworks that can
support applications, such as community discovery, that depend on information
latent in the social data [Chi et al. 2006; Kolda and Sun 2008; Lin et al. 2008; Lin
et al. 2009; Sun et al. 2006].

We note essential computational elements in recognizing nuanced patterns of
bridging and linking among individuals and communities that occur through social
media at different structural levels of interaction:

—In social networks, user interactions and community interests are constantly
evolving, often tracking real-world events. Social media data is also multi-faceted:
typically involving multiple types of relationships (e.g. friendship, co-commenting
on a news story). Entities in social networks may also have different attributes,
e.g. location, age, profession. The multi-dimensional and multi-relational nature
of these interactions increases the complexity that the computational algorithms
need to handle.

—The datasets relevant to the analysis are enormous in size and diverse in form
and content, and are growing and evolving rapidly. The volume of the data and
the speed with which the data changes pose significant challenges. Furthermore,
a framework for extracting useful information from social media data needs to
scale also against the number and diversity of the facets of the data.

Consequently, scalable frameworks, which are able to analyze voluminous social
media data, are important to any significant technical advances in social media
understanding. In this paper, we propose SCENT, an innovative, spectral analy-
sis framework for Internet scale monitoring of multi-relational social media data,
encoded in the form of tensor streams.

1.1 SCENT: Scalable Compressed Domain Analysis of EvolviNg Tensors

A scalable framework for managing voluminous user data in a form amenable for
large scale data analysis is a key step to any significant technical advances in social

1http://www.facebook.com/press/info.php?statistics
2http://blog.twitter.com/2010/02/measuring-tweets.html
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media understanding. The computational ceiling arising due to finite resources re-
quires us to pursue innovative strategies to address the data scalability challenges.
To facilitate very large scale data management and analysis, in this paper, we pro-
pose SCENT, Scalable Compressed Domain Analysis of EvolviNg Tensors frame-
work for monitoring the evolution of multi-faceted (also called multi-relational)
social network data resulting from users’ continuous online interactions.

The key characteristics of social media data sets of urgent interest include the
following: (a) voluminous, (b) multi-relational, (c) evolving, and (d) spectrally reg-
ular. As it is common in social media analysis, in SCENT, we model the social data
in the form of tensor (multi-dimensional array) streams [Chi et al. 2006; Sun et al.
2006] and consider the problem of tracking the changes in the spectral properties
of the tensor over time. Prior work, including [Sun et al. 2006], also considered
this problem formulation and attempted to tackle the underlying computational
complexity issues through incremental tensor decomposition techniques.

The problem with these existing approaches, however, is that (while being faster
than regular tensor decomposition) even incremental tensor decomposition has ex-
ponential complexity [Sun et al. 2006]. To reduce the computational cost of de-
tecting significant changes in the tensor streams, SCENT introduces an innovative
compressed sensing mechanism that is able to encode the social data tensor streams
in the form of compact descriptors. Compressive sensing (CS) is an emerging area
of research in Information theory [Candès and Romberg 2007; Candès and Tao
2006; Candès and Wakin 2008], which shows that under certain conditions a signal
can be faithfully reconstructed using fewer number of samples than predicted by
the well-known Nyquist sampling theorem. We show that the descriptors allow
very fast detection of significant spectral changes in the tensor stream, which also
reduce data collection, storage, and processing costs.

While there has been work in other domains, such as audio, on change analysis
and onset detection, there are key domain-specific differences between the tech-
niques applicable in different domains. The major differences between traditional
multimedia and social media data, especially within the context of change detec-
tion, include: (a) at each time instance, the relevant data forms a (multi-relational)
graph – as opposed to a vector or matrix of intensity values; (b) the graph is very
large. Therefore, change detection in social media data requires techniques that
can efficiently detect structural changes in very large graphs.

In this paper, we focus on the problem of change detection, a key step in under-
standing the development and evolution patterns in multi-relational social media
data. Our contributions include the following:

(1) Compressive sensing for tensors: The first contribution of this paper is to
extend the recently developed CS theory to tensor stream analysis. CS theory
has been primarily used in the analysis of 1D and 2D continuous time signals.
Furthermore, we note that (as we discuss in Section 3) the basic compressed
sensing theory assumes the availabilities of (a) a sparse data basis and (b) a
constant time random sensing mechanism, neither of which generally holds in
social media tensors.

(2) Compressed tensor encoding : We show how to create and use random sensing
ensembles to transform a given tensor into a compressed representation that

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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implicitly captures the spectral characteristics of the tensor (i.e. the so called
core tensor coefficients [Tucker 1966]). The length of this compressed represen-
tation is only O(S · logN/S), where N is the size of data tensor and S is a small
approximation rank.

(3) Efficient change detection: We also show that if the goal is to only identify
the points of significant change (as opposed to discovering the values of the
spectral coefficients at each time instance), the random sensing ensembles can
be created more cheaply. Moreover, changes can be detected by comparing
tensors in their compressed representations with logarithmic space cost.

(4) Tensor coefficient recovery : We propose three recovery strategies to incremen-
tally obtain core tensor coefficients either from the input data tensor or from the
compressed representation. These strategies can be used in different situations
based on the availability of data and resources.

(5) Systematic evaluation: We systematically study the efficiency and effectiveness
of our proposed framework on both synthetic and real data sets. On syn-
thetic datasets, we study the SCENT performance over different data sizes,
dimensionalities, and evolution scenarios. This provides a general recommen-
dation for applications with different computational resources available. On
real data sets, we demonstrate the efficiency of SCENT on monitoring time-
varying multi-relational social networks. The experimental results show that
our SCENT monitoring procedure is able to maintain an approximated tensor
stream with high accuracy (above 0.9 in terms of F1-score), low errors (under
1.1 relative to baseline tensor decomposition in real-world datasets) and low
time cost (17X–159X faster for change detection).

1.2 Organization

The rest of this paper is organized as follows. Section 2 introduces tensor analysis
and the problem of spectral tracking. Section 3 presents the proposed framework,
compressed sensing of tensors. Section 4 reports experiments. Section 5 reviews
the related work and Section 6 presents our conclusion and future work.

2. SPECTRAL TRACKING FOR THE EVOLUTION OF SOCIAL NETWORKS

We model the social data in the form of tensor (multi-dimensional array) streams.
This section provides key notations and minimal background on tensor represen-
tation (Section 2.1) and anlysis (Section 2.2). These will allow us to formally
state the problem of tracking significant changes occurring in the social media data
stream (Section 2.3). For a more comprehensive review on tensors, we refer readers
to [Kolda and Bader 2009].

2.1 Tensor Representation of Social Data

A tensor is a mathematical representation of a multi-way array. The order of a
tensor is the number of modes (or ways). A first-order tensor is a vector, a second-
order tensor is a matrix, and a higher-order tensor has three or more modes. We
use x to denote a vector, X denote a matrix, and X a tensor. Figure 1 provides
an example order-3 tensor representing the three-way relations of users, topics, and
keywords. Each entry (i, j, k), for example, could represent the number of times

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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Fig. 1: Social network representation via a 3-mode data tensor Xt at time t, which can be sum-
marized by a core tensor and factors for each mode (Tucker decomposition).

Table I: Description of notations.

Symbol Description

x a vector (boldface lower-case letter)
X a matrix (boldface capital letter)

X a tensor (boldface script letter)

I1, ..., IM the dimensionality of mode 1, ..., M
Ui|Ni=1,Xi|Ni=1 a sequence of N matrices or tensors

‖X‖ the norm of a tensor X
‖x‖1, ‖x‖2 the l1-norm or l2-norm of a vector x
Φ,Ψ basis matrices

the user i submitted an entry on topic j with keyword k. Table I presents the key
notations used in this work. Please see Appendix A for more details on tensors.

2.2 Tensor Analysis

Matrix data is often analyzed for its latent semantics using a matrix decomposi-
tion operation known as the singular value decomposition (SVD). The analogous
analysis operation on a tensor is known as tensor decomposition [Kolda and Bader
2009]. CP/PARAFAC [Carroll and Chang 1970; Harshman 1970] and Tucker de-
composition [Tucker 1966] are the two most popular tensor decomposition variants
(see [Kolda and Bader 2009] for a detailed review). In this paper, we use the Tucker
decomposition to obtain the spectral coefficients (and the basis matrices) of a given
tensor.

Definition 2.1 Tucker decomposition. A Tucker decomposition of X ∈ RI1×...×IM

yields a core tensor Z of specified size R1× ...×RM and factor matrices Um|Mm=1 ∈
RIm×Rm such that

X ≈ Z
M∏

m=1

×mUT
m, (1)

i.e., the reconstruction error e = ‖X − Z
∏M

m=1×mUT
m‖ is minimized. The right-

hand side denotes a tensor multiplies a sequence of matrices: Z ×1 U1... ×M UM

where the symbol ×d denotes the mode-d product (see Definition A.3). The Tucker
decomposition approximates a tensor as a smaller core tensor times the product
of matrices spanned by the first few left singular vectors in each mode. Typically,
the factor matrices Um|Mm=1 in Tucker decomposition are assumed to be orthogonal
(the assumption does not hold for CP decomposition).

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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Fig. 2: Problem overview: Our goal is to develop a fast spectral tracking mechanism that reduces
the processing cost.

Figure 1 also depicts the Tucker decomposition of the order-3 tensor representing
the three-way relations of users, topics, and keywords. In this case, each factor
matrix describes one distinct facet of the data: i.e., users, topics, and keywords
clusters; the core tensor on the other hand indicates the strength (e.g., amount of
correlation) of the relationships among the three facets.

2.3 Spectral Tracking

Figure 2 illustrates a social data stream in tensor form. In this example, the data
stream is represented as a sequence of tensors, each representing a snapshot of the
social network. Spectral tracking of this stream involves identifying when signif-
icant changes occur in the data stream and updating the analysis appropriately.
Therefore, the problem of spectral tracking can be formalized as follows.

“Given a sequence of tensors Xt|Tt=1 ∈ RI1×...×IM , compute the core tensor and
factor matrices, Zt and Um;t|Mm=1 such that the mean reconstruction error

eT =
1

T

T∑
t=1

‖Xt − X̃t‖, (2)

where X̃t ≈ Zt

∏M
m=1×mUT

m;t, is minimized.”
The tracking process involves (1) fetching the data tensors for each time (access

cost) and (2) determining whether there is a significant structural change at the time

(process cost). Given the reconstructed tensor stream X̃t|Tt=1, significant changes
in the core tensor are often seen as indicators of the structural (i.e., correlational)
changes in the data [Kolda and Sun 2008; Sun et al. 2006]. However, obtaining the
core tensor through the decomposition process is expensive. While it is possible to
incrementally maintain the decomposition, the time complexity of the incremental
maintenance itself is O(

∑M
i=1RiI

2
i ) + O(

∑M
i=1 Ii

∏M
j=1 Ij); i.e., exponential in the

number of modes, or data facets, M . Here Ri denotes the specified rank of the i-th
factor matrix, whereas Ii denotes the dimensionality of the data tensor along the
i-th mode.

Therefore, a key step in efficient spectral tracking is to minimize the computa-
tional cost required in this process.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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3. COMPRESSIVE SENSING OF TENSORS

In this paper, we argue that significant spectral changes can be detected and struc-
tural properties can be tracked without having to rely on incremental decomposition
maintenance. We present an efficient spectral tracking framework in this section.
After introducing the basic compressed sensing theory (Section 3.1), we present
how to extend the theory to tensor analysis (Section 3.2), to develop algorithms for
change detection and tensor recovery (Section 3.3 and 3.4).

3.1 Compressive Sensing

Recent developments in information theory have shown that under certain condi-
tions, sparse signals (i.e., signals with few spectral coefficients) can be recovered
from a very small number of samples or measurements [Candès and Wakin 2008].
Let v ∈ Rn be an n-dimensional vector (i.e., a signal). Mathematically, sampling
(or sensing) of this vector can be described in the form of a matrix product, y = Φv,
with a k × n sensing matrix Φ. The k-dimensional vector y denotes the k samples
one obtains from the data vector v; v is called s-sparse if it has s non-zero entries.
CS asserts that an s-sparse signal v can be recovered from y if the sensing matrix,
Φ, satisfies the restricted isometry property (RIP); i.e., Φ should be such that

(1− δs)‖u‖22 ≤ ‖Φu‖22 ≤ (1 + δs)‖u‖22 (3)

holds simultaneously for all s-sparse vectors u and a sufficiently small value δs (here
‖u‖2 =

√∑
i u

2
i is the l2-norm of vector u). Intuitively, RIP means that all subsets

of s columns from Φ are nearly orthogonal (but the columns of Φ cannot be exactly
orthogonal since there are more columns than rows). This result is especially useful
because of the following two observations:

—Existence of a convenient sensing matrix : It has been shown that k × n random
matrices whose rows are chosen randomly from a suitable distribution satisfying
RIP with overwhelming probability, provided that k ≥ C · s · log(n/s), where C
is some small positive constant[Candès and Tao 2006; Candès and Wakin 2008].
This implies that it is easy to construct a sensing matrix with small number of
samples.

—Sufficiency of sparsity in an alternative transform space: The result also holds for
a suitably transformed version of v that is s-sparse. Let Ψ be a transformation
matrix such that the coefficient vector w = Ψ−1v is s-sparse; then, the sampling
process can be formulated as y = Φv = ΦΨw. The CS theory states that, if Φ
is a random matrix satisfying RIP, then in most cases the product A = ΦΨ will
also satisfy RIP [Baraniuk et al. 2008]. This implies that most real-world signals
(whose coefficients tend to be sparse in some spectral domain) can be efficiently
sampled using CS. Note that in CS literature, Ψ often refers to an orthornormal
basis (such as a wavelet basis); however, other proper bases can be chosen as long
RIP is satisfied, as we shall discuss later.

Furthermore, it has been shown that if we are given a k-dimensional sampling
vector y = Φv (or equivalently y = ΦΨw = Aw), the coefficient vector w can be

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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recovered exactly, with high probability, by solving the minimization problem:

minx‖w̃‖1 subject to y = Aw̃,

where ‖v‖1 =
∑

i |vi| is the l1-norm of v. Here the role of l1 minimization is to
search the sparsest w̃ that satisfies the constraint y = Aw̃, and w = w̃ with high
probability.

3.2 Sparse Random Sensing Tensors

Suppose Φ is a random sensing matrix satisfying RIP (Equation 3); standard CS
involves computing the inner product of data vector with rows of Φ. We extend
this to tensors as follows: Given a tensor X ∈ RI1×...×IM , we

(1) construct K random tensors Rk|Kk=1 of the same size as X , and

(2) obtain a sensing vector y with each element yk = 〈X ,Rk〉.
As discussed in Section 3.2, to efficiently encode data X into a compressed rep-

resentation y, we need to establish (a) a sparse data basis for X and (b) a constant
time random sensing mechanism.

The above procedure has an equivalent counterpart in matrix form – we construct
a K × N random sensing matrix Φ, where N =

∏M
m=1 Im. Φ comprises vec(Rk)

in each row, and then obtain y = Φx, where x=vec(X ). Here, “vec(·)” is the
vectorization operation which unfolds the tensor into a vector.

In practice, sensing matrices that satisfy the RIP property are quite easy to
generate [Candès and Tao 2006]. In our work, we consider a sparse ensemble sug-
gested by Baraniuk et al. [Baraniuk et al. 2008] which established that RIP holds
with high probability when the K ×N matrix Φ is drawn according to (as long as
K ≥ C · s · log(N/s) for all s-sparse vectors, where C is some positive constant):

Φkj =

√
3

n

 +1 with probability 1/6
0 ... 2/3
−1 ... 1/6

. (4)

The advantage of such ensemble is that the sensing matrix Φ (i.e. the set of random
tensors Rk’s) will only have about 1/3 non-zero entries.

To construct sparse transformation of data, let us consider a tensor decomposi-
tion of tensor X ; i.e., X ≈ Z

∏M
m=1×mUT

m for Z ∈ RR1×...×RM and Um|Mm=1 ∈
RIm×Rm . While Z itself will be dense, the number of coefficient in Z is much
smaller than the size of X ; i.e., Z can be seen as the set of sparse coefficients of X .
Note that, the vector y can be written as

y = ΦΨz, (5)

where z = vec(Z) and Ψ is a matrix representation of
∏M

m=1×mUm. Thus, we can
see y as a sensing vector (measurements) for not only the data tensor X , but also
for the core tensor Z with respect to the transformed matrix (basis) Ψ comprising
of a particular set of factor matrices Um|Mm=1. With the following lemma, it is easy
to show that RIP (Equation 3) holds for ΦΨ and the core tensor Z can be recovered
through compressive sensing.

Lemma 3.1. If the factor matrices Um|Mm=1 are orthogonal, the matrix Ψ con-
structed based on Equation 5 is also orthogonal.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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Table II: SCENT CS-based change detection.

Input:
New data tensor Xt

Past sensing vector yt−i

The set of random tensors Rk|Kk=1
Output:

Spectral change at time t relative to time t− i

Change-Detection:
1. Sense yt from yk;t = 〈Xt,Rk〉
2. Compute δ = ‖yt − yt−i‖/‖yt−i‖. If δ > τy , output change

See Appendix B for the proof of Lemma 3.1.

Accordingly, with the sparse transformed representation Z of data X , the length
of the compressed sensing vector y is only O(S · logN/S), where N is the size of
data tensor and S is a small approximation rank (the size of core tensor). Also see
Appendix B for more detailed discussion.

3.3 CS-based Change Detection

Significant changes in the data are reflected in significant changes in the core tensor
coefficients [Kolda and Sun 2008; Sun et al. 2006]; thus significant changes in the
tensor stream can be said to occur between time instances t and t − i (for some
i ≥ 1) if ‖∆Z‖ = ‖Zt − Zt−i‖ = ‖zt − zt−i‖ > τz, for some positive value τz.
Because z = (ΦΨ)−1y, we can write ∆z = (ΦΨ)−1∆y = (ΦΨ)−1(yt − yt−i). This
means that, assuming that P−1 = (ΦΨ)−1 exists, we can detect changes in the core
tensor simply by using the sensing vectors yt and yt−i. While, in general, P−1

may not exist, the Moore-Penrose pseudo-inverse P+ = (PTP)−1PT is guaranteed
to exist3 and is unique4. Thus, we approximate ∆z as ∆z∗ = P+(yt − yt−i). The
transformed matrix Ψ can be chosen from the tensor decomposition of an arbitrary
data tensor Xt′ so that for any zt and zt−i, Ψ does not change and hence P remains
constant. Consequently, we have ‖∆z∗‖ ∝ ‖∆y‖ and the relative change in y can
be computed by δ = ‖yt − yt−i‖/‖yt−i‖. This enables us to develop a compressive
sensing based spectral change detection algorithm, as listed in Table II.
Cost. Let L be the number of non-zero entries in data tensors5 Xt and Xt−i.

The computational cost for detecting a spectral change in a given time instance
only involves the random sensing process; i.e., K inner products on the non-zero
entries in both data and random tensors, which is only O(KL). Note that the set
of random tensors used for sensing only need to be constructed once; the same set
of sensing tensors can be reused for each time instance.

3For arbitrary matrices, the existence of the Moore-Penrose pseudo-inverse may be established

from the singular value decomposition (SVD). See e.g., [Golub and Van Loan 1996].
4If a matrix A is invertible, its inverse and pseudoinverse are the same; moreover the pseudoinverse
of a pseudoinverse is the original matrix.
5Tensors that encode social media are known to be relatively sparse [Kolda and Sun 2008]
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3.4 Core Tensor Recovery

In this section, we present three complementary core tensor recovery strategies. We
focus on the core tensor coefficients as the factor matrices can be obtained from
the latest performed tensor decomposition and can be folded together with a core
tensor to approximate the original data. For the sampling vector y = ΦΨz, where Φ
is the sensing matrix and Ψ is a matrix representation of the factor matrixes of the
data tensor, the core tensor Z (or z) can be recovered by: (a) tensor decomposition
based recovery, (b) factor-driven recovery , and (c) CS-recovery. By leveraging with
change detection procedure, these strategies can be used in different situations based
on the availability of data and resources.
Tensor decomposition based recovery. As we mentioned earlier, the con-

ventional mechanism to recover the core tensor is to either carry out full tensor
decomposition or maintain the decomposition incrementally. SCENT can reduce
the cost by relying to them only when significant changes are detected in the tensor
stream as described in Section 3.3.
Factor-driven recovery. In factor matrix driven recovery, the core tensor

is recovered using the data tensor and the factor matrices. The transformation
z = ΨTx which would give the core tensor coefficients from the data values and
the matrix representation Ψ of

∏M
m=1×mUm is equivalent to the tensor operation

Z = X
∏M

m=1×mUm. The computational cost of this process is O(N) where

N =
∏M

m=1 Im, but it relies on the availability of the full data tensor as well as the
factor matrices. Note that unless a significant change has been detected (in which
case tensor will be decomposed), the set of factor matrices can be picked from the
most recent decomposition of an earlier data tensor; i.e., Ψ remains unchanged, and
tensor decomposition is needed only when significant spectral changes are detected
through compressive sensing.
CS-recovery. Let P = ΦΨ be a K × S matrix6. It has been shown that the

core tensor coefficient z can be recovered from constrained l1-minimization [Candès
and Romberg 2007]:

minz‖z̃‖1 subject to y = Pz̃. (6)

When the data tensor is large, we have K ≥ S and this means that we no longer
have an undersampled situation given a fixed basis Φ; thus, z can be recovered
unambiguously by l2-minimization:

min‖y −Pz̃‖2 (7)

and the solution z∗ is obtained from z∗ = P+y, where as mentioned earlier, P+ =
(PTP)−1PT is the Moore-Penrose pseudo-inverse. Note that, the computational
cost of CS-recovery is dominated by computing P which is O(KSN) where K × S
is the size of P, N is the data size defined above. While computing P is relatively
expensive, this can be done offline (i.e. when a significant change is detected and
the factor matrices are being updated), and the online phase involves computing
core tensor coefficient given P.

6Here we use a different variable P and z instead of A and w due to the special construction of

P based on tensor decomposition. See Appendix B for more detailed explanation.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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Table III: Core tensor recovery.

Encoding: Given data tensor X ∈ RI1×...×IM

1. Construct the random tensors Rk|Kk=1 of the same size as X
2. Sense y from yk = 〈X ,Rk〉

Decoding: Given sensing vector y, random tensors Rk|Kk=1, factor matrices Um|Mm=1

(a) Tensor decomposition (given the data tensor X )

Construct the core tensor by decomposing X
(b) Factor-driven recovery (given the data tensor X )

Construct the core tensor from Z = X
∏M

m=1×mUm

(c) CS-recovery (given the sensing vector y)
1. Construct the matrix P = ΦΨ

2. Compute core tensor coefficient z = vec(Z) from z = P+y

...
time

data tensor stream

.. …..
…

..

1

2

K

…..

1 2

y1 y2

t

yt

Encoding
(random sensing)

change detection

tensor 
decompositon

...
1


2

 
t

Decoding
(tensor recovery)

Fig. 3: Our SCENT framework reduces the process cost by triggering tensor decomposition based

on change detection.

We summarize these strategies in Table III (also see Appendix C for more details
about the three strategies). The overall encoding (sensing) and decoding (recovery)
process is illustrated in Figure 3.

4. EXPERIMENTS

We evaluated SCENT on both synthetic data and real-world data sets with the goal
of studying the performance in terms of (a) change detection accuracy, (b) recovery
error, and (c) cost running time. We consider these under different (synthetic
and real) data sets and parameter settings. In the following we first describe the
datasets, the baseline methods and the performance metrics used in the evaluations.
We then report and discuss the results.

ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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Table IV: Real-world datasets.

Dataset Digg DBLP

dimensions
2575 users × 51 topics 78 conferences × 6226 authors
× 8596 keywords × 6251 keywords

density 3× 10−6 1× 10−6

timestamps 27 (days) 14 (years)

4.1 Datasets

Digg dataset. From the Digg dataset described in [Lin et al. 2009], we extracted a
sequence of third order tensors to represent the user-topic-keyword relation. Each
tensor represents the data of one day (from August 1 to August 27, 2008). Each
(i, j, k)-entry in the tensor represents that a user i submits a story of topic j with
a keyword k. In this dataset, the average number of stories submitted per day is
4076. Consequently, the data density per tensor, i.e. fraction of non-zero entries of
a tensor, is about 3× 10−6.
DBLP dataset. From the DBLP data, we generate a sequence of conference-

author-keyword tensors. Each (i, j, k)-entry in a tensor represents that an author
j published a paper with keyword k in conference i. Each tensor represents papers
published in a year (from 1995 to 2008). In this dataset, the average number of
papers per year is 3180, corresponding to the mean number of non-zero entries of
a tensor. The data density per tensor is about 10−6.

The properties of tensors in both real datasets are listed in Table IV. As can be
seen, the data tensors in both datasets are relatively sparse.
Synthetic datasets. We design a simulation to generate synthetic tensor streams

as input data. The simulation, with ground truth available, helps get a more com-
prehensive picture about the performance of SCENT in handling diverse structure
change scenarios. We generated a set of tensor streams (i.e. sequences of tensors)
with characteristics that have been observed in prior research, such as power-low
distribution [Barabási et al. 2002] and densification over time [Leskovec et al. 2005].
The simulation is controlled by a set of parameters (see Table VII in Appendix D
for the list of parameters). Specifically, we created tensors of different sizes (from
103 to 106), data densities (from 10−4 to 10−1), and number of modes (from 3 to
6), with fixed Poisson parameter λ = 10 (average timesteps between two changes)
and tensor stream length T = 200. We used a relatively large drift rate (∼ 5%;
data deviation between two change events) and a high change frequency (λ = 10)
to test SCENT in stress conditions. The details of the synthetic data generation
are provided in Appendix D.

4.2 Change Detection Methods

We compare the following monitoring procedures, each of which estimates change,
∆, and reports if ∆ exceeds a threshold τ .

(1) Näıve-monitor – detects the change based on the difference in consecutive data
tensors, i.e. ∆ = ‖Xt −Xt−1‖/‖Xt−1‖.

(2) Basic-monitor – detects change based on the difference in reconstructed data

tensors across time, i.e., ∆ = ‖X̃t − X̃t−1‖/‖X̃t−1‖ where is the approximated
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tensor of X obtained from standard Tucker tensor decomposition.

(3) DTA-monitor – Similar to the basic-monitor except the approximated tensors
are obtained by an incremental tensor analysis called DTA [Sun et al. 2006].
At each time t, DTA utilizes the decomposition results of Xt−1 to compute

X̃t. The forgetting factor in DTA is set to be 0.1 for all the experiments as
suggested by the authors7.

(4) SCENT-monitor – as described in Section 3.3, SCENT detects change based
on the difference in the random sensing of data tensors, i.e. ∆ = ‖yt −
yt−1‖/‖yt−1‖, where y is the random sensing of tensor X . The length of
sensing measurements K is controlled by the sampling constant C and core
tensor size. We fixed the approximation rank to be 5 in each mode, for all
methods described below.

4.3 Recovery Methods

While DTA-monitor relies on conventional tensor decomposition, the SCENT-
monitor uses the following CS-based recovery strategies to maintain the approx-
imated tensor streams:

—SCENT-c (piecewise-constant recovery) – performs full tensor decomposition
whenever a change is detected using CS-based approach and holds the decompo-
sition results until the next change point.

—SCENT-f (factor-driven recovery) – performs full tensor decomposition whenever
a change is detected, and uses the decomposition factor matrices to perform
factor-driven recovery until next change point.

—SCENT-p (CS-recovery through P matrix) – performs full tensor decomposition
whenever a change is detected, and uses the decomposition factor matrices to
update the P matrix and to perform the CS-recovery8.

4.4 Performance Metrics

We use three metrics to evaluate the efficiency of SCENT:

—Detection accuracy (F1): We evaluate change detection accuracy using the F1-

score based on precision and recall: F1 = 2 · precision·recall
precition+recall

.

—Error ratio: We assess the coefficient recovery performance by comparing the
mean reconstruction error (Equation 2) against the mean reconstruction error of
the Basic-monitor scheme.

—Running time (CPU time in seconds).

The experiments are repeated 10 times under each of the different settings and the
average performance results are reported.

7When the forgetting factor is set to be 0, DTA outputs results as from standard Tucker tensor

decomposition. We have used DTA with forgetting factor 0 to implement Basic-monitor.
8Because the offline computation of P is relatively expensive, in this paper we focus on the online

phase of CS-recovery and report its performance on the synthetic datasets.
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Table V: Average running time (in seconds) and error ratio. In both datasets, all methods have

similar recovery error ratios. However, the time costs (both detection and recovery) of SCENT-
monitor are relative low.

Detection Digg DBLP Recovery Digg DBLP

time time time error time error
Basic 0.810 1.700 Basic 0.810 1 1.700 1

DTA 0.875 1.688 DTA 0.875 1.003 1.688 1.001

SCENT 0.020 0.011 SCENT-c 0.202 1.040 1.040 1.020
SCENT-f 0.338 1.011 1.011 1.010

Table VI: Summary of performance improvement of SCENT-monitors with respect to the Basic-

monitor.

Detection
Recovery

SCENT-c SCENT-f

Gain (speed-up) in Digg 40.4X 299% 144%
Loss (error increase) in Digg N/A 3.95% 1.97%

Gain (speed-up) in DBLP 159.3X 139% 11.51%

Loss (error increase) in DBLP N/A 1.09% 0.94%

4.5 Experiments with Digg and DBLP Data

Figure 4 shows the efficiency of SCENT-monitors on Digg and DBLP datasets,
compared with baseline methods Basic- and DTA- monitor. We use C = 1/4
for SCENT-monitors. Since in these datasets, the ground truth about the abrupt
changes is not available, for this experiment we only report the recovery error
ratio and the running times. Figure 4 (a) shows the running time for the Digg
dataset – the recovery step for SCENT-monitor is required only when changes are
detected, i.e. only in 5 of the 27 days: day 3, 11, 16, 17 and 25. Figure 4 (b)
shows the error ratio in Digg dataset – the error ratios appear to slightly increase
right before change detection; the error ratio of SCENT-f remains low throughout
the experiment. Figure 4 (c) shows the running time for the DBLP dataset – the
recovery step of SCENT-c is required only when significant changes are detected in
’98, ’02, ’03 and ’07. Figure 4 (d) shows the corresponding error ratio – once again
error ratios of SCENT schemes remain low (<1.1).

Table V shows the average running times and error ratios. A summarization
of performance gain versus loss is given in Table VI. In addition to having low
average error ratios in both datasets, the time costs of SCENT-monitors (SCENT-
c and SCENT-f) are relatively low. The SCENT-monitors perform 40∼159X faster
in change detection and up to 3X faster in recovery, with an error penalty of 1∼4%
on average (ref. Table VI). Due to factor-driven recovery between two detected
changes, SCENT-f has a lower error ratio than SCENT-c, but a higher running
time.

The experiments show that, since tensor decomposition takes significantly more
time, a fast change detection mechanism is critical in reducing the overall execution
costs.
ACM Transactions on Computational Logic, Vol. 2, No. 3, 09 2001.
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(a) Digg

(b) Digg

(c) DBLP

(d) DBLP

Fig. 4: Efficiency comparison based on Digg and DBLP datasets. (a,c) Running time in Digg and

DBLP datasets: The Basic- and DTA- monitor perform full or incremental tensor decomposition

at each time frame. For SCENT-c and SCENT-f, full tensor decomposition is required only when
changes are detected: see the peaks in the running time curves. For SCENT-c, since there is

no maintenance, the time costs between two change points include only the detection costs; for
SCENT-f, however, the time includes detection time plus factor-driven recovery time at each

instance. Note that there is a significant difference in SCENT-f costs between Digg and DBLP

data sets. (b,d) The error ratios of SCENT-monitors remain low for most of the tensors; the
errors appear to slightly increase right before change detection. Note: we use a sampling constant

C = 1/4 for SCENT-monitors. The average performances are reported in Table V and Table VI.

4.6 Synthetic Data Experiments

The goal of the experiments with synthetic data is to observe the detection accuracy
based on the ground truth and to observe the performance as a function of key
parameters.

As can be seen in Figure 5 (a), in terms of change detection accuracy, despite
relying on the whole data set, the Näıve-monitor performs the worse: i.e., structural
changes in the social media cannot be estimated directly from the data. The other
three methods show comparable performance. Note also that the detection accuracy
drops slightly in the case of large densification rates; again, the largest drop is for
the Näıve-monitor.

As mentioned earlier, in these experiments we used a relatively large ∼5% drift
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(a) (b) (c)

Fig. 5: Efficiency comparisons with baseline methods. (a) detection accuracy (F1-score; higher is
better), (b) recovery error ratio (lower is better), and (c) run time (in seconds; lower is better).

Note that for baseline methods (Basic- and DTA-monitor), the detection time and recovery time

are the same (for Náıve-monitor, the error ratio and running time do not have meaning; hence it
does not appear in (b) and (c)); C = 1/4 for the SCENT-monitors.

rate and a high frequency λ = 10 of abrupt changes to observe the recovery error in
stress conditions. Figure 5 (b) shows that, the DTA-monitor is the best in terms of
the recovery error relative to the Basic monitor. This is expected as both perform
similar tensor decompositions. The SCENT alternatives perform well despite the
significant drift rate (the error ratio is between 1.2 and 1.5 relative to the Basic-
monitor). Figure 5 (c) shows that SCENT-monitor has much lower running time
relative to alternatives. For change detection, SCENT is about 17.7X faster than
the baseline methods. CS-based processing also helps reduce the recovery time
for SCENT-c and SCENT-f by up to ∼25% despite the high frequency of abrupt
changes: the fact that SCENT-c recovery is much higher than the detection cost
indicates that most of the cost comes from the decomposition cost when changes are
detected; the fact that SCENT-c and SCENT-f are close to each other indicates that
the factor-driven recovery adds only a minimal overhead. Also note that the online
phase of the SCENT-p recovery (with P matrix computed offline) is 68%∼76%
faster than the baseline methods.
Scalability. In Figure 6, we study how the computational time of SCENT

varies with changes in (a) tensor size (total number of entries of a tensor), (b)
tensor density (ratio of non-zero elements in a data tensor), and (c) tensor order
(number of tensor modes. The running time increases sub-linearly with the increase
of tensor size (ref. Figure 6 (a)). Figure 6 (b) shows that running time increases
roughly linearly with tensor density. Note that in both Figure 6 (a) and (b), the
x-axes are in log-scale. Figure 6 (c) shows the detection running time remains
constant and the recovery running time increases almost linearly with the number
of tensor modes. This is important in that the core tensor size, and hence the cost
of decomposition, increases exponentially with the number of modes. Our SCENT
method reduces the overall process cost tremendously by taking advantage of a fast
change detection algorithm. The results are in agreement with Section 3.3.

5. RELATED WORK

Stream mining and time-series analysis. There is abundant literature on
stream mining and time-series analysis, such as efficient frequent-item mining based
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(a) (b) (c)

Fig. 6: Scalability evaluation. We evaluate scalability with respect to: (a) tensor size (total
number of entries of a tensor), (b) tensor density (ratio of non-zero elements in a data tensor),

and (c) tensor order (number of tensor modes. For both detection and recovery, the running time
increases sub-linearly with tensor size and roughly linearly with tensor density and order. Note

that the x-axes in (a) and (b) are in log-scale.

on statistical synopses and other approximation techniques [Cormode and Had-
jieleftheriou 2009], anomaly or novelty detection [Yang et al. 1998; Dasgupta and
Forrest 1996], and clustering different types of data streams [Aggarwal and Yu
2005; Aggarwal 2003; Chen and Liu 2009; Aggarwal and Yu 2010]. There has also
been work using online or incremental supervised learning on data streams to ad-
dress the “concept drift” problem [Domingos and Hulten 2000; Wang et al. 2003].
Most of these proposed methods focus on time-series of scalar values, categorical
or homogeneous network data as opposed to our multi-relational network data.
Online news and event tracking. The problem of tracking online news or

events has been studied as part of the Topic Detection and Tracking (TDT) task [Al-
lan et al. 1998; Kumaran and Allan 2004] which seeks to identify and organize news
events in a continuous stream (e.g. a stream of broadcast news stories). With the
abundance of text corpora, many of these approaches rely on natural language pro-
cessing techniques [Brants et al. 2003; Kumaran and Allan 2004], document clus-
tering [Allan et al. 1998], or LDA-based models [Blei et al. 2003; Blei and Lafferty
2006; Wang and McCallum 2006]. The problem has recently attracted consider-
able research interests due to the extraordinary popularity, growth, and influence
of online social media. There has been work on tracking events in blogs [Bala-
subramanyan et al. 2009; Leskovec et al. 2009]. Besides textual features, there
has been work utilizing a variety of context features in social media, such as au-
thors, tags, hyperlinks, times and locations, to improve event mining from social
media sources. For example, Becker et al. [Becker et al. 2009] identified events
(e.g., President Obama’s inauguration) by combining the variety of social media
features based on a few domain-specific similarity metrics and a weighted ensemble
clustering. Many of these approaches concern offline process of data and disregard
the online scalability issues. In complementary, our scalable online framework can
be applied to this line of work in that we consider a more general rich setting where
keywords are on one of multiple facets and an event is manifested as long as a
significant change occurs in the correlations of multiple facets.
Tensor analysis. Tensor decompositions have been used in a variety of appli-

cations in data mining. Chi et al. [Chi et al. 2006] applied the high-order singular
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value decomposition (HOSVD, a version of the Tucker decomposition) to extract
dynamic structural changes as trends of the blogosphere. Sun et. al [Sun et al.
2006] proposed methods for dynamically updating a Tucker approximation, with
applications ranging from text analysis to network modeling. Although tensors
are power tools for representing and mining higher order data, the analysis based
on tensor decomposition are usually expensive. To tackle large-size tensor decom-
position, Kolda and Sun [Kolda and Sun 2008] have proposed a scalable Tucker
decomposition for sparse tensors. A biased sampling method has been proposed
in CUR tensor decomposition [Drineas and Mahoney 2007], which reduce tensor
dimensions based on the marginal norm distribution along each mode.

Applications of compressed sensing. The desirable features of CS has drawn
significant research interests in signal processing, and has been recently extended to
many applications, ranged from computer vision to networked data analysis [Haupt
et al. 2008]. For example, Bajwa et al. [Bajwa et al. 2006] applies CS to identify
sparse channels in order to optimize the wireless communication systems.
Graph mining, compression and sampling. Latent Semantic Indexing

(LSI) [Deerwester et al. 1990] employs SVD to discover the latent topics or fac-
tors in the document-term matrix. On the Web, methods based on ranking algo-
rithms [Brin and Page 1998; Kleinberg 1999], spectral clustering or graph partition-
ing [Shi and Malik 2000] and probability mixture model (such as PLSI [Hofmann
1999]) have been proposed for web data reduction. In addition, time-varying graphs
have been analyzed through, for example, evolutionary clustering [Lin et al. 2008].
Also, existing works in lossless social graph compression [Chierichetti et al. 2009]
are able to reduce the storage complexity to 3-4 bits per edge. The graph sampling
work has a different goal in that it seek to reduce the data in a way that preserves
statistical and topological properties of the overall network [Leskovec and Faloutsos
2006; Rusmevichientong et al. 2001]. Most algorithms leverage connectivity and the
degree of activity as indicators of importance and filter the graphs in a way that
maintains only important nodes and edges [Leskovec and Faloutsos 2006].

Many of existing social network analysis and mining approaches do not con-
sider the impact of temporal dynamics on the analysis quality and computational
cost. In this paper, we focus on identifying the significant change points when a
costly tensor computation would be necessary: Through compressive sensing, our
SCENT framework provides a strong indication of the change to the core tensor.
In between significant changes, the spectral properties are tracked using relatively
cheaper alternatives with good recovery properties.

6. CONCLUSION AND FUTURE WORK

We proposed the SCENT framework for monitoring the evolution of multi-relational
social network data from users’ continuous online interactions. To track spectral
characteristics in multi-relational data, prior work relies on tensor decomposition,
which is computationally expensive for internet scale data management and anal-
ysis. The key idea in this paper was that significant spectral changes in multi-
relational networks can be quickly detected before tensor decomposition, and the
fast change detection can further speed up the tensor stream approximation. We
leveraged tensor based analysis with the recent established CS theory to develop
the SCENT framework, which involved: (a) encoding the observed tensor streams
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in the form of compact descriptors through sparse random sensing, and (b) incre-
mentally obtaining core tensor coefficients either from the input data tensor or from
the compact descriptors. The experimental results showed that our SCENT mon-
itoring procedure was able to maintain an approximated tensor stream with high
accuracy (above 0.9 in terms of F1-score), low errors (under 1.5 relative to baseline
tensor decomposition) and low time cost (17X–159X faster for change detection).
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APPENDIX

A. TENSORS

This sections provide the key notations and main concepts used in this paper. For
a more comprehensive discussions on tensors, we refer readers to Kolda and Bader’s
review [Kolda and Bader 2009].

A tensor is a mathematical representation of a multi-way array. The order of a
tensor is the number of modes (or ways). We use x to denote a vector, X denote a
matrix, and X a tensor. A sequence of tensors X1 ... Xn is called a tensor stream, if
n is a positive integer that increases with time. The dimensionality of a mode is the
number of elements (entities) in that mode. We use Id to denote the dimensionality
of mode d. E.g., the tensor X ∈ RI1×I2×I3 has 3 modes with dimensionalities of
I1, I2 and I3, respectively. The (i1,i2,i3)-element of a third-order tensor is denoted
by X123. Indices typically range from 1 to their capital version, e.g. i1=1,...,I1.
Specifically for a matrix X, we use X(i, :) and X(:, j) to extract the i-th row and
the j-th column of X. We provide the definitions of tensor norm, matricization or
unfolding, and tensor product in Appendix A.

Definition A.1 Tensor norm. The norm of an M -order tensor X ∈ RI1×...×IM is

‖X‖ =
√∑I1

i1=1

∑I2
i2=1 ...

∑IM
iM=1 x

2
i1i2...iM

.

Definition A.2 Mode-d matricization or unfolding. Matricization is the process
of reordering the elements of an M -way array into a matrix. The mode-d matri-
cization of a tensor X ∈ RI1×...×IM is denoted by X(d), i.e. unfold(X , d) = X(d) ∈
RId×

∏
q∈{1,...,M},q 6=d Iq . Unfolding a tensor on mode d results in a matrix with height

Id and its width is the product of dimensionalities of all other modes. The inverse
operation is denoted as X = fold(X(d)) ∈ RI1×...×IM . Similarly, we can define
a vectorization operation x=vec(X ), which linearizes (unfolds) the tensor into a
vector.

Definition A.3 Mode-d product. The mode-d matrix product of a tensor X with
a matrix U ∈ RJ×Id is denoted by X ×d U and results in a tensor of size I1 × ...×
Id−1 × J × Id+1 × ... × IM . Elementwise, we have (X ×d U)i1i2...id−1jid+1...iM =∑Id

id=1 xi1i2...iMujid . In general, a tensor X ∈ RI1×...×IM can multiply a sequence

of matrices Ui|Mi=1 ∈ RIi×Ri as: X ×1 U1... ×M UM , which can be written as

X
∏M

i=1×iUi for clarity.

B. PROOF AND DISCUSSION

Proof of Lemma 3.1. In Equation 5. Ψ is a matrix representation of
∏M

m=1×mUm.
Specifically, let j be the linear index corresponding to a set of subscript values
(j1, ..., jM ), and define a tensor Bj such that

Bj = Bj1...jM =

M∏
m=1

×mUm(:, jm), 1 ≤ jm ≤ Rm,

where Um(:, jm) is the jm-th column of Um. Ψ is constructed such that Ψ(:, j) =

vec(Bj) ∀1 ≤ j ≤ S, where S =
∏M

m=1×mRm. Let um
im

= Um(:, im), um
jm

= Um(:

, jm), ∀m ∈ [1,M ], be two set of vectors. We have Bi = Bi1...iM = u1
i1
⊗u2

i2
⊗...⊗uM

iM
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and Bj = Bj1...jM = u1
j1
⊗ u2

j2
⊗ ... ⊗ uM

jM
, where ⊗ denotes the tensor product

operation (or outer product).
The inner product 〈Bi,Bj〉 = 〈u1

i1
⊗ u2

i2
⊗ ... ⊗ uM

iM
,u1

j1
⊗ u2

j2
⊗ ... ⊗ uM

jM
〉 =

〈u1
i1
,u1

j1
〉〈u2

i2
,u2

j2
〉...〈uM

iM
,uM

jM
〉. Hence, 〈Bi,Bj〉 = 1 when i = j and 0 if i 6= j.

Since Ψ(:, j) = vec(Bj) ∀1 ≤ j ≤ S, the columns of Ψ are mutually orthogonal.

With Lemma 3.1, we can establish that RIP (Equation 3) holds for the pair ΦΨ
due to the incoherence [Candès and Romberg 2007] between Φ and Ψ, where Φ here
is constructed by the sparse ensemble method and satisfies RIP [Baraniuk et al.
2008]. The verification of RIP in Equation 5 plays a crucial role in our method.
In CS literature, the formulation of sampling process y = Φv = ΦΨx usually
considers the transformation matrix Ψ as an n × n orthonormal basis, where n
is the length of signal. Consequently, the transformed vector x ∈ Rn is required
to be s-sparse (where s < n). In such case, the at most s nonzero entries in x
can be effectively recovered by l1-minimization [Candès and Romberg 2007] (as
described in Equation 6). In our method, the transformation matrix Ψ ∈ RN×S

(i.e. the matrix representation of
∏M

m=1×mUm) is not an orthonormal basis and
it directly transforms the data into a relatively small vector z ∈ RS (the vector
representation of the core tensor Z). Hence we need to verify that RIP holds for

ΦΨ in Equation 5 in particular to assure that
∏M

m=1×mUm is a proper basis and
z is a concise representation in this basis (z is not necessarily sparse).

The proper transformation leads to two main advantages in our method. First,
in the sensing step (Section 3.2 and 3.3), the length of the sensing vector y ∈
RK , is determined by the choice of the K × N sensing matrix Φ (i.e. the set of
random tensors Rk’s). When Φ is constructed by the sparse ensemble method
[Baraniuk et al. 2008], RIP holds for the random sensing matrix Φ as long as
K ≥ C · s · log(N/s) for all s-sparse vectors, where C is some positive constant.
Based on Lemma 3.1, we can verify that RIP holds for the S-length vector z as
long as K ≥ C · S · log(N/S) random tensors are used. Hence, the length of the
compressed sensing vector y is only O(S ·logN/S). Second, in the recovering process
(Section 3.4), we show that when K is chosen to be larger than S in the sensing
step, z can be recovered unambiguously by l2-minimization (Equation 7), which is
a more effective recovering process than l1-minimization.

C. RECOVERY STRATEGIES

The core tensor recovery strategies described in Section 3.4 can be illustrated by
Figure 7. By leveraging with change detection procedure, these strategies, corre-
sponding to different ways the random sensing ensembles have been constructed,
can be used in different situations based on the availability of data and resources.

D. EXPERIMENT DETAILS

Running time in Digg and DBLP data. In Figure 8, we study how the
computational time of the three variants of our SCENT method vary with changes
in data density. The original data density (number of non-zero elements in data
tensors) in both real-world datasets can be found in Table IV. In these experiments,
we randomly remove 10% ∼ 90% elements from the original data tensors and report
the running time of SCENT. As can be seen, the running time remains almost
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Fig. 7: Recovery strategies: (a) tensor decomposition based, (b) factor-driven, and (c) CS-recovery.
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Fig. 8: Running time against data density. The running time remains roughly constant when
randomly removing 10% ∼ 90% elements from the original data tensors in both real-world datasets.

constant on both datasets. This observation is also consistent with the scalability
test in the synthetic data experiments (see Figure 6(b)) which shows that when the
data density increases exponentially, the running time increases roughly linearly.

Length of sensing vector. Figure 9 shows the impact of the parameter, C,
on SCENT in the synthetic data experiments: a larger value of C leads to higher
accuracy in detection and lower error ratio, with only slightly increase in the de-
tection time. The empirical results suggest that both the detection and recovery
quality are reasonably well as long as C ≥ 1/4.
Synthetic data settings. In the synthetic data experiments (ref. Section 4.1),
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(a) (b) (c)

Fig. 9: (a) Detection accuracy (F1-score), (b) error ratio, and (c) detection running time (sec.)

over different values of sampling constant C. The performance of SCENT increases with larger

value of C (higher accuracy and lower error ratio), with slightly increase in running time.

Table VII: Synthetic data settings.

Fixed settings:

B tensor stream length (T ): 200
B drift rate: ∼ 5% (data deviation between two change events)

B change frequency (λ): 10 (average timesteps between two changes)

Varying settings:
B tensor size, density, and number of modes

B densification rate (κ): with probability κ, a non-zero entries is relocated

through preferential attachment

we generated a set of tensor streams (i.e. sequences of tensors) with characteristics
that have been observed in prior research. The simulation is controlled by a set of
parameters listed in Table VII.
Data drift in Synthetic datasets. The synthetic data are generated as follows:

each tensor stream Xt|Tt=1 is generated to simulate (a) abrupt changes and (b)
drifts. Abrupt change events are generated based on Poisson distribution with
parameter λ, the expected length of interval between changes. We model an abrupt
change at t by generating a random tensor Xt, where the non-zero entries are
distributed at random according to a specified data density (i.e. the ratio of the
number of non-zero entries to the total number of entries in a tensor). Drifts are
small changes between consecutive tensors. Since it has been observed that social
network evolution exhibits preferential attachment phenomena (see e.g. [Barabási
et al. 2002]) and the network tends to densify over time [Leskovec et al. 2005], we
model drifts through a densification parameter, κ – with probability κ, a non-zero
entry is relocated through preferential attachment and with probability 1 − κ, it
is moved to a random location. The relocation process proceeds until the tensor
norm deviates from the original at a specified rate.

We model data drift to simulate the preferential attachment phenomenon. Prior
work on preferential attachment considers a unipartite or bipartite network. To
implement the idea on multi-relational networks, we relocate a non-zero entry in
a tensor based on the degree distribution along each mode of the tensor. The
parameter, densification probability κ, controls to what extent the data drift is
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Table VIII: Data drift model.

Given: data tensor X ∈ RI1×...×IM , densification probability κ, drift rate δ,
generate data drift H by the following process:

H := X
Repeat while ‖H − X‖/‖X‖ < δ

Randomly pick a non-zero entry x from H
Randomly pick a mode m ∈ [1,M ]

With probability κ, pick a zero entry x′ from H along mode-m with
probability proportional to∑

i1...im−1im+1...iM
hi1...im−1imim+1...iM∑

i1...iM
hi1...iM

and then swap the value of x and x′

With probability 1− κ, randomly pick a zero entry x′ from H along mode-m,
and then swap the value of x and x′

driven by preferential attachment. Another parameter, drift rate δ, controls how
much the new data tensor deviates from the old one. The data drift model is given
in Table VIII.
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